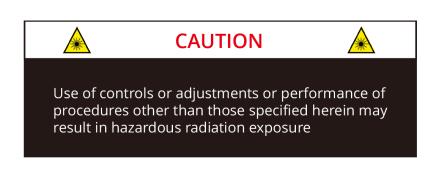


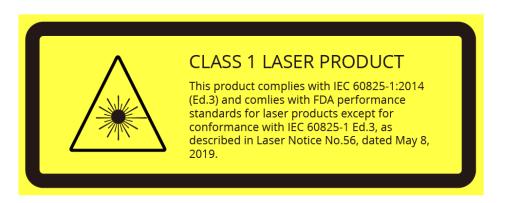
Pandar64

64-Channel Mechanical LiDAR User Manual

Contents

Sa	Safety Notice1		
1	Introd	uction4	
	1.1	Operating Principle4	
	1.2	LiDAR Structure5	
	1.3	Channel Distribution6	
	1.4	Specifications	
2	Setup	8	
	2.1	Mechanical Installation8	
	2.2	Interfaces	
	2.3	Connection Box (Optional)14	
	2.4	Get Ready to Use	
3	Data S	structure19	
	3.1	Point Cloud Data Packet	
	3.2	GPS Data Packet	
4	Web C	ontrol33	
	4.1	Home	
	4.2	Settings35	
	4.3	Azimuth FOV	
	4.4	Operation Statistics	


	4.5	Upgrade	.43		
5	5 PandarView45				
	5.1	Installation	.45		
	5.2	Check Live Data	.46		
	5.3	Record Point Cloud Data	.47		
	5.4	Play Point Cloud Data	.48		
	5.5	Features	.50		
6	Comm	nunication Protocol	.56		
7	Senso	r Maintenance	.57		
8	Troub	leshooting	.59		
A	Appendix I Channel Distribution62				
Appendix II Absolute Time and Laser Firing Time67					
Appendix III PTP Protocol70					
Appendix IV Phoenix Contact72					
Appendix V Nonlinear Reflectivity Mapping73					
A	ppendi	x V Nonlinear Reflectivity Mapping	.73		
		x V Nonlinear Reflectivity Mappingx VI Certification Infox			


Safety Notice

PLEASE READ AND FOLLOW ALL INSTRUCTIONS CAREFULLY AND CONSULT ALL RELEVANT NATIONAL AND INTERNATIONAL SAFETY REGULATIONS FOR YOUR APPLICATION.

Caution

To avoid violating the warranty and to minimize the chances of getting electrically shocked, please do not disassemble the product. The product must not be tampered with and must not be changed in any way. There are no user-serviceable parts inside the product. For repairs and maintenance inquiries, please contact an authorized Hesai Technology service provider.

■ Laser Safety Notice - Laser Class 1

This device satisfies the requirements of

- · IEC 60825-1:2014
- 21 CFR 1040.10 and 1040.11 except for deviations (IEC 60825-1 Ed.3) pursuant to Laser Notice No.56, dated May 8, 2019

NEVER LOOK INTO THE TRANSMITTING LASER THROUGH A MAGNIFYING DEVICE (MICROSCOPE, EYE LOUPE, MAGNIFYING GLASS, ETC.)

Safety Precautions

In all circumstances, if you suspect that the product malfunctions or is damaged, stop using it immediately to avoid potential hazards and injuries. Contact an authorized Hesai Technology service provider for more information on product disposal.

Handling

This product contains metal, glass, plastic, as well as sensitive electronic components. Improper handling such as dropping, burning, piercing, and squeezing may cause damage to the product.

In case the product is dropped, STOP using the product immediately and contact Hesai technical support.

Cover Lens

This product contains high-speed rotating parts. To avoid potential injuries, DO NOT operate the product if the cover lens is loose or damaged. To ensure optimal performance, do not touch the product's cover lens with bare hands. If the cover lens is already stained, please refer to the cleaning method in the Sensor Maintenance chapter of user manuals.

Eye Safety

Although the product meets Class 1 eye safety standards, DO NOT look into the transmitting laser through a magnifying product (microscope, eye loupe, magnifying glass, etc.). For maximum self-protection, avoid looking directly at the product when it is in operation.

Repair

DO NOT open and repair the product without direct guidance from Hesai Technology. Disassembling the product may cause degraded performance, failure in water resistance, or potential injuries to the operator.

Power Supply

Use only the cables and power adapters provided by Hesai Technology. Using off-spec or damaged cables or adapters, or supplying power in a humid environment can result in fire, electric shock, personal injuries, product damage, or property loss.

Hot Surface

During or after a period of operation, DO NOT touch the product's cover lens with your skin. Such direct contact with the hot surface can result in discomfort or even burns. If you incorporate this LiDAR product into your product(s), you should also communicate the hot surface risks to the intended users of your product(s).

Vibration

Strong vibration may cause damage to the product and should be avoided. If you need the mechanical vibration and shock limits of this product, please contact Hesai technical support.

Radio Frequency Interference

Please observe the signs and notices on the product that prohibit or restrict the use of electronic devices. Although the product is designed, tested, and manufactured to comply with the regulations on RF radiation, the radiation from the product may still influence electronic devices.

Medical Device Interference

Some components in the product can emit electromagnetic fields, which may interfere with medical devices such as cochlear implants, heart pacemakers, and defibrillators. Consult your physician and medical device manufacturers for specific information regarding your medical device(s) and whether you need to keep a safe distance from the product. If you suspect that the product is interfering with your medical device, stop using the product immediately.

Explosive Atmosphere and Other Air Conditions

Do not use the product in any area where potentially explosive atmospheres are present, such as high concentrations of flammable chemicals, vapors, or particulates (including particles, dust, and metal powder) in the air. Exposing the product to high concentrations of industrial chemicals, including liquefied gases that are easily vaporized (such as helium), can damage or weaken the product's function. Please observe all the signs and instructions on the product.

Light Interference

Some precision optical instruments may be interfered by the laser light emitted from the product.

1 Introduction

This manual describes the specifications, installation, and data output format of Pandar64.

This manual is under constant revision. To obtain the latest version, please visit the Download page of Hesai's official website, or contact Hesai technical support.

1.1 Operating Principle

Distance Measurement: Time of Flight (ToF)

- 1) A laser diode emits a beam of ultrashort laser pulses onto the target object.
- 2) The laser pulses are diffusely reflected after hitting the target object. The returning beam is detected by an optical sensor.
- 3) Distance to the object can be accurately measured by calculating the time between laser emission and receipt.

$$d = \frac{ct}{2}$$
 d: distance c: speed of light t: travel time of the laser beam

Figure 1.1 Distance Measurement Using Time of Flight

1.2 LiDAR Structure

64 pairs of laser emitters and receivers are attached to a motor that rotates horizontally.

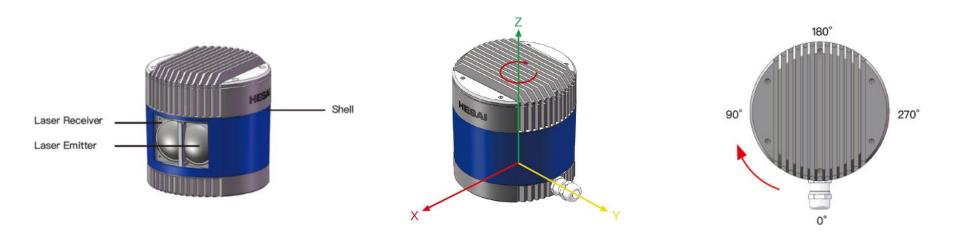


Figure 1.2 Partial Cross-Sectional Diagram

Figure 1.3 Coordinate System (Isometric View)

Figure 1.4 Rotation Direction (Top View)

The LiDAR's coordinate system is illustrated in Figure 1.3. Z-axis is the axis of rotation.

The origin is shown as a red dot in Figure 1.6 on the next page. All measurements are relative to the origin.

Each laser channel has an intrinsic horizontal angle offset. When Channel 18 passes the zero-degree position in Figure 1.4, the azimuth data in the corresponding UDP data block will be 0°.

1.3 Channel Distribution

The vertical resolution is

- 0.167° between Channel 6 and Channel 54
- 1° between Channel 5 and Channel 6, as well as between Channel 54 and Channel 62
- not evenly distributed in the remaining channels, as detailed in Appendix I.

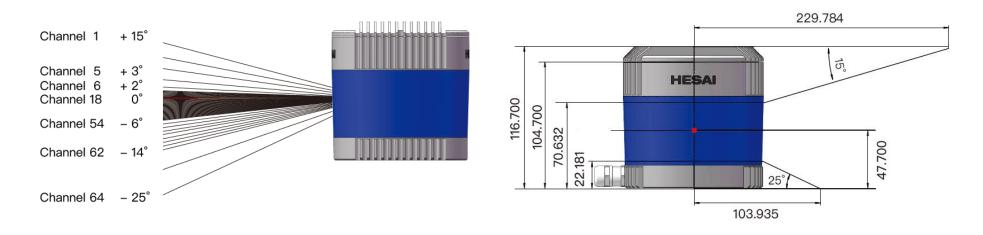


Figure 1.5 Channel Vertical Distribution

Figure 1.6 Laser Firing Position (Unit: mm)

Each channel has an intrinsic angle offset, both horizontally and vertically.

The offsetted angles are recorded in this LiDAR unit's calibration file, which is provided when shipping the unit.

In case you need to obtain the file again:

- Send this TCP command PTC_COMMAND_GET_LIDAR_CALIBRATION, as described in Hesai TCP API Protocol (Chapter 6).
- Or contact a sales representative or technical support engineer from Hesai.

1.4 Specifications

SENSOR		
Scanning Method	Mechanical Rotation	
Channel	64	
Range	0.3 to 200 m (at 10% reflectivity)	
Range Accuracy	± 5 cm (0.3 to 1 m)	
	± 2 cm (1 to 200 m)	
FOV (Horizontal)	360°	
Resolution (Horizontal)	0.2° (10 Hz), 0.4° (20 Hz)	
FOV (Vertical)	40° (-25° to +15°)	
Resolution (Vertical)	0.167° (-6° to +2°)	
	1° (-14° to -6°, +2° to +3°)	
	2° (+3° to +5°)	
	3° (+5° to +11°)	
	4° (+11° to +15°)	
	5° (-19° to -14°)	
	6° (-25° to -19°)	
Frame Rate	10 Hz, 20 Hz	
Returns	Single Return (Last, Strongest)	
	Dual Return (Last and Strongest)	
Returns	Single Return (Last, Strongest)	
	Dual Return (Last and Strongest)	
NOTE Specifications ar	e subject to change. Please refer to the	
latest version.		
NOTE Devices a services	. A.L	

L/OPERATIONAL
905 nm
Class 1 Eye Safe
IP6K7
Height: 116.7 mm
Top/Bottom Diameter: 118.0 / 116.0 mm
DC 9 to 48 V
22 W (typical)
-20°C to 65°C
1.52 kg
UDP/IP Ethernet (100 Mbps)
Distance, Azimuth Angle, Intensity
Single Return: 1,152,000 points/sec
Dual Return: 2,304,000 points/sec
Single Return: 29.66 Mbps
Dual Return: 59.33 Mbps
GPS / PTP
<1 μs
≤1 μs/s
Class 1 Laser Product

NOTE Range accuracy as the average range error across all channels may vary with range, temperature, and target reflectivity.

2 Setup

2.1 Mechanical Installation

Figure 2.1 Front View (Unit: mm)

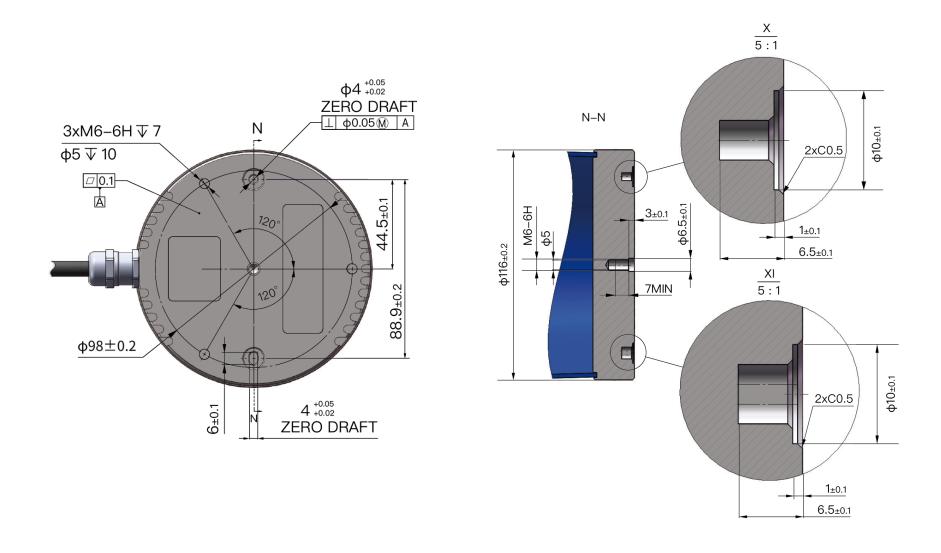


Figure 2.2 Bottom View (Unit: mm)

Quick Installation

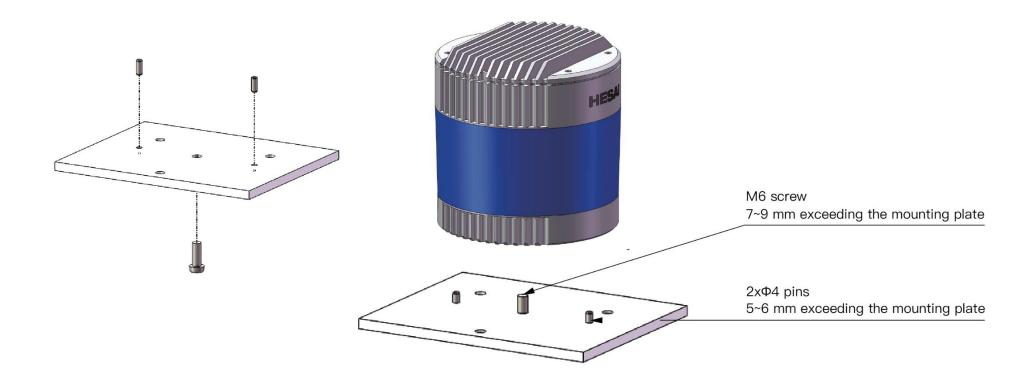


Figure 2.3 Quick Installation

■ Stable Installation

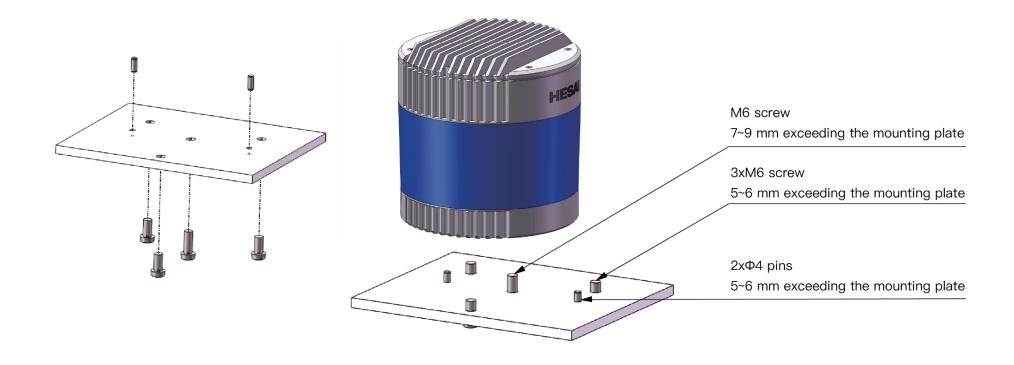


Figure 2.4 Stable Installation

2.2 Interfaces

Lemo Contact is the default communication connector. (Another option is the Phoenix Contact, detailed in Appendix IV.) Lemo part number: FGG.2T.316.CLAC75Z (male plug, on the LiDAR)

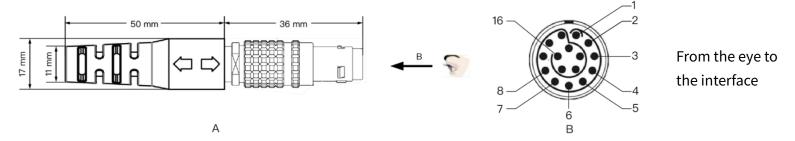


Figure 2.5 Lemo Connector (Male Plug)

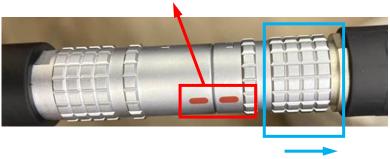
Pin#	Signal	Color	Voltage
1~4	-	-	-
5	Ethernet RX-	BLUE	-1 to 1 V
6	Ethernet RX+	BLUE/WHITE	-1 to 1 V
7	Ethernet TX-	ORANGE	-1 to 1 V
8	Ethernet TX+	ORANGE/WHITE	-1 to 1 V
9	GPS Serial Data	WHITE	-13 to +13 V
10	GPS PPS	YELLOW	TTL 3.3/5 V

Pin#	Signal	Color	Voltage
11	Power	RED	9 to 48 V
12	Power	GRAY	9 to 48 V
13	Ground (Return)	BLACK	0 V
14	Ground (Return)	GRAY/WHITE	0 V
15	Index	PURPLE	0 to 3.3 V
16	Encoder	PURPLE/WHITE	0 to 3.3 V

NOTE For the GPS PPS signal, pulse width is recommended to be over 1 ms, and the cycle is 1 s (rising edge to rising edge)

NOTE Before connecting or disconnecting an external GPS signal (either using the cable's GPS wire or via the connection box's GPS port), make sure the LiDAR is powered off. If the LiDAR has to stay powered on, make sure to:

- · ground yourself in advance
- avoid touching the GPS wire or GPS port with bare hands


Connector Use

Connection	Disconnection
Turn off the power source	Turn off the power source
Align the red dots on the connector shells	Pull the release sleeve on the male connector to its outermost position and hold there
Push the plug straight into the socket	Pull the plug from the socket

NOTE

- DO NOT attempt to force open a connection by pulling on the cables or the shells, or by twisting the connectors in any way. Doing so can loosen the connectors' shells, or even damage the contacts.
- In case a connector's shell is accidentally pulled off, stop using the connector and contact Hesai technical support.
- DO NOT attempt to assemble the connector's shell and cable collet; DO NOT connect a connector without its shell. Doing so may damage the LiDAR's circuits.

Before connection: align the red dots

Before disconnection: pull the release sleeve to its outermost position and hold there

Figure 2.6 Lemo Connection/Disconnection

Cables

OD (outside diameter) = 7.50 ± 0.30 mm

Minimum bend radius: 7.5 * OD

NOTE To avoid damaging the cable, do not bend the cable at the cable gland.

2.3 Connection Box (Optional)

Users may connect the LiDAR directly or using the connection box.

Lemo part number: PHG.2T.316.CLLC75Z (female socket, on the connection box)

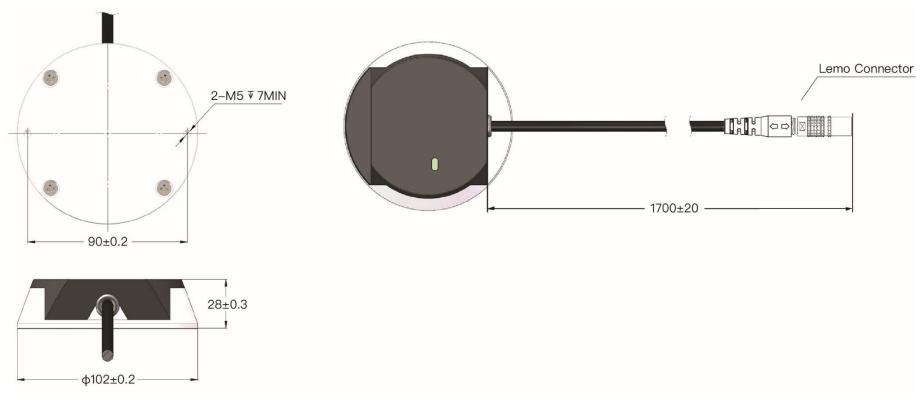


Figure 2.7 Connection Box (Unit: mm)

2.3.1 Connection Box Interfaces

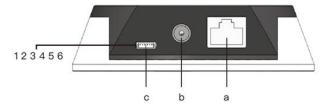


Figure 2.8 Connection Box (Front)

Port #	Port Name	Description	
а	Standard Ethernet Port	RJ45, 100 Mbps Ethernet	
b	Power Port	Use DC-005 DC power adapter	
		External power supply: 9 V to 48 V, at least 22 W	
С	GPS Port	Connector type: JST, SM06B-SRSS-TB	
		Recommended connector for the external GPS module: JST, SHR-06V-S-B	
		Voltage standard: RS232 Baud rate: 9600 bps	

The GPS port pin numbers are 1 to 6 from left to right, defined as follows:

Pin#	Direction	Pin Description	Requirements
1	Input	PPS (pulse-per-second) signal for synchronization	TTL level 3.3/5 V Recommended pulse width: ≥1 ms
			Cycle: 1 s (from rising edge to rising edge)
2	Output	Power for the external GPS module	5 V
3 Output Ground for the external GPS module		Ground for the external GPS module	-
4 Input Receiving serial data from the external GPS module		Receiving serial data from the external GPS module	RS232 level
5	Output	Ground for the external GPS module	-
6	-	Reserved	-

For Pandar64 LiDARs with Lemo connectors, a trigger port is added to output external trigger signals.

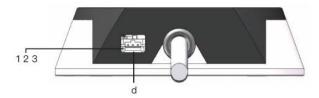


Figure 2.9 Connecting Box (Back)

Port #	Port Name	Description
d	Trigger Port	Outputs external trigger signals for multi-sensor synchronization.
		Connector (socket): Molex, LLC 5023520300
		Recommended wire connector (plug): Molex, LLC 5023510300
		Voltage: 0 to 3.3 V
		Signal type: pulse
		Max. current output level: 12 mA

Pin Description for the trigger port:

Pin#	Direction	Pin Description
1	Input	GND, to ground the external trigger signal
2	Output-Encoder	Trigger signal: outputs one pulse when the LiDAR rotates 0.05°
		Pulse width: 7 μs @ 600 RPM, 3.5 μs @ 1200 RPM
3	Output-Index	Trigger signal: outputs one pulse when Channel 18 passes the LiDAR's 180° position (see Figure 1.4)
		Pulse width: 4 μs @ 600 RPM, 2 μs @ 1200 RPM

2.3.2 Connection

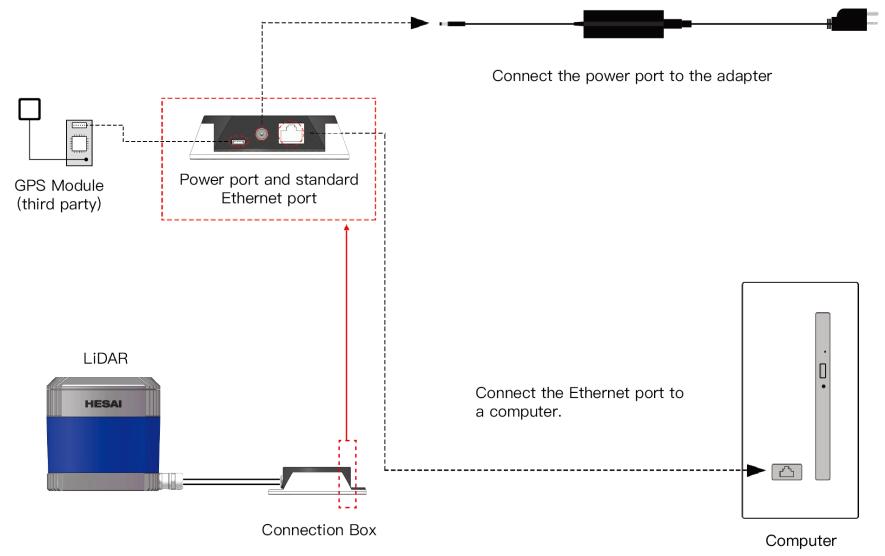


Figure 2.10 Connection Box - Connection

NOTE Refer to Appendix III (PTP Protocol) when PTP protocol is used.

2.4 Get Ready to Use

Before operating the LiDAR, strip away the protective cover outside the cover lens.

The LiDAR does not have a power switch. It starts operating once connected to power and the Ethernet.

To receive data on your PC, set the PC's IP address to 192.168.1.100 and subnet mask to 255.255.255.0

For Ubuntu:	For Windows:
Input this ifconfig command in the terminal:	Open the Network Sharing Center, click on "Ethernet"
~\$ sudo ifconfig enp0s20f0u2 192.168.1.100	In the "Ethernet Status" box, click on "Properties"
(replace enp0s20f0u2 with the local Ethernet port name)	Double-click on "Internet Protocol Version 4 (TCP/IPv4)"
	Configure the IP address to 192.168.1.100 and subnet mask to 255.255.255.0

To record and display point cloud data, see Chapter 5 (PandarView)

To set parameters, check device info, or upgrade firmware/software, see Chapter 4 (Web Control)

To obtain the SDKs (Software Development Kits) for your product model,

- please find the download link at: www.hesaitech.com/en/download (Product Documentation → select product model)
- or visit Hesai's official GitHub page: https://github.com/HesaiTechnology

3 Data Structure

The LiDAR outputs Point Cloud Data Packets and GPS Data Packets using 100 Mbps Ethernet UDP/IP.

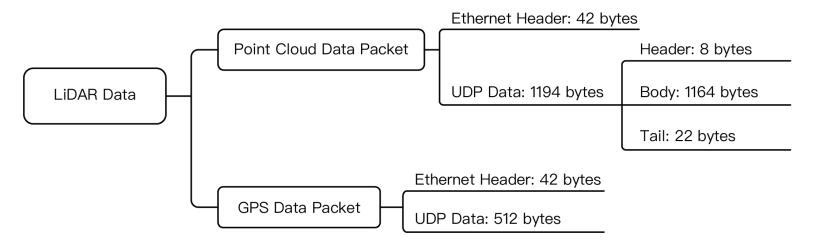


Figure 3.1 Data Structure with UDP Sequence OFF

UDP sequence is OFF by default. When UDP sequence is ON, the Additional Information in the UDP data changes from 22 bytes to 26 bytes.

3.1 Point Cloud Data Packet

3.1.1 Ethernet Header

Each LiDAR has a unique MAC address. The source IP is 192.168.1.201 by default, and the destination IP is 0xFF FF FF (broadcast).

Point Cloud Ethernet Header: 42 bytes				
Field	Bytes	Description		
Ethernet II MAC	12	Destination: broadcast (0xFF: 0xFF: 0xFF: 0xFF: 0xFF)		
		Source: (xx:xx:xx:xx:xx)		
Ethernet Data Packet Type	2	0x08, 0x00		
Internet Protocol	20	Shown in Figure 3.2		
UDP Port Number	4	UDP source port (0x2710, representing 10000) Destination port (0x0940, representing 2368)		
UDP Length	2	0x04B2 when UDP sequence is OFF, representing 1202 bytes (8 bytes more than the size of the		
		Point Cloud UDP Data, shown in Figure 3.1)		
		0x04B6 when UDP sequence is ON, representing 1206 bytes		
UDP Checksum	2	-		

```
□ Internet Protocol, Src: 192.168.1.201 (192.168.1.201), Dst: 255.255.255.255.255.255.255.255)

Version: 4

Header length: 20 bytes

□ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

Total Length: 1222

Identification: 0xe960 (59744)

□ Flags: 0x02 (Don't Fragment)

Fragment offset: 0

Time to live: 64

Protocol: UDP (17)

□ Header checksum: 0x8a55 [correct]

Source: 192.168.1.201 (192.168.1.201)

Destination: 255.255.255.255.255.255.255.255.255.
```

Figure 3.2 Point Cloud Ethernet Header - Internet Protocol

3.1.2 UDP Data

All the multi-byte values are unsigned and in little endian format.

■ Header

Header: 8 bytes			
Field	Bytes	Description	
0xEEFF	2	SOP (start of packet), 0xEE first	
Laser N	1	0x40 (64 channels)	
Block N	1	0x6 (6 blocks per packet)	
Reserved	1	-	
Dis Unit	1	4 mm	
Reserved	1	-	
Reserved	1	-	

■ Body

Body: 1164 bytes (6 blocks)					
Block 1	Block 2	Block 3		Block 6	
Azimuth 1	Azimuth 2	Azimuth 3		Azimuth 6	
Channel 1	Channel 1	Channel 1		Channel 1	
Channel 2	Channel 2	Channel 2		Channel 1	
Channel 64	Channel 64	Channel 64		Channel 64	

Under the Dual Return mode, the measurements from each round of firing are stored in two adjacent blocks:

- The odd number block is the last return, and the even number block is the strongest return
- If the last and strongest returns coincide, the second strongest return will be placed in the even number block
- The Azimuth changes every two blocks

Block size = size of Azimuth + 64 * Size of Channel X

Each Block in th	Each Block in the Body: 194 bytes			
Field	Bytes	Description		
Azimuth	2 bytes	Current reference angle	e of the rotor, in little endian format (lower byte first)	
		Azimuth Angle = Azimuth / 100°		
Channel X	3 bytes	2-byte Distance In little endian format (lower byte first)		
		Distance Value = Distance * 4		
		1-byte Reflectivity Range: 0 to 255		
		The mapping from this field to target reflectivity can be selected in Section 4.2		
			(Web Control – Settings)	

■ Tail

Tail: 22/26 bytes when UDP	Tail: 22/26 bytes when UDP sequence is OFF/ON			
Field	Bytes	Description		
Reserved	5	-		
High Temperature Shutdown Flag	1	 0x01 for high temperature; 0x00 for normal operation When high temperature is detected, the shutdown flag will be set to 0x01, and the system will shut down after 60 s. The flag remains 0x01 during the 60 s and the shutdown period When the system is no longer in high temperature status, the shutdown flag will be reset to 0x00 and the system will automatically return to normal operation 		
Reserved	2	-		
Motor Speed	2	speed_2_bytes [15:0] = speed (RPM)		
Timestamp	4	The " μ s time" part of the absolute time of this data packet (defined in Appendix II), in units of 1 μ s Range: 0 to 1000000 μ s (1 s)		
Return Mode Information	1	0x37 for Strongest Return mode, 0x38 for Last Return mode, and 0x39 for Dual Return mode		
Factory Information	1	0x42 (or 0x43)		

(Continued on the next page)

(Continued)

Field	Bytes	Description		
Date & Time	6	The absolute time of this data packet, accurate to the second.		
		Each Byte	Range (Decimal)	
		Year (current year minus 2000)	Positive integers	
		Month	1 to 12	
		Day	1 to 31	
		Hour	0 to 23	
		Minute	0 to 59	
		Second	0 to 59	
LIDD Coguence		Added only when UDP sequence is ON		
UDP Sequence 4		Label the sequence number of Point Cloud UDP packets, 0 to 0xFF FF FF in little endian format		

3.1.3 Point Cloud Data Analysis

The analysis of point cloud UDP data consists of three steps.

Analyze the vertical angle, horizontal angle, and distance of a data point

Take Channel 5 in Block 3 as an example:

- 1) Vertical angle of Channel 5 is 3.04°, according to Appendix I (Channel Distribution)

 NOTE The accurate vertical angle is recorded in this LiDAR's unit's calibration file, see Section 1.3 (Channel Distribution).
- 0° represents the horizontal direction
- Define upward as positive
- The Channel # from the uppermost counts from 1
- 2) Horizontal angle = current reference angle of the rotor + horizontal angle offset + firing time angular offset
- Current reference angle of the rotor is the Azimuth field of Block 2
- Horizontal angle offset: -1.042° for Channel 5, according to Appendix I (Channel Distribution)

NOTE The accurate horizontal angle offset is recorded in this LiDAR's unit's calibration file, see Section 1.3 (Channel Distribution).

- Firing time angular offset = Firing Time Offset of Channel 5 (see Appendix II) * Spin Rate of the Motor (see Section 4.1 Web Control Home)
- Define clockwise in the top view as the horizontal angles' positive direction
- 3) Actual distance in real world millimeters = distance measurement * Distance Unit (4 mm) Distance measurement is the Distance field of Channel 5 in Block 3

(Continued on the next page)

(Continued)

- Draw the data point in a polar or rectangular coordinate system
- Obtain the real-time point cloud data by analyzing and drawing every data point in a frame

3.2 GPS Data Packet

GPS Data Packets are triggered every second. All the multi-byte values are unsigned and in little endian format.

Before NMEA messages are available from the external GPS module

Each rising edge of the LiDAR's internal 1 Hz signal triggers a GPS Data Packet.

The time and date in the GPS Data Packets are unreal, starting from the UTC time 00 01 01 00 00 00 (year, month, day, hour, minute, second) and increasing with the internal 1 Hz signal.

Once the LiDAR receives the PPS (pulse-per-second) signal and NMEA messages

The internal 1 Hz signal will be locked to the PPS. Each rising edge still triggers a GPS Data Packet.

Meanwhile, the LiDAR will extract the actual date and time from NMEA messages (\$GPRMC or \$GPGGA), and stamp them into both Point Cloud Data Packets and GPS Data Packets.

- Point Cloud Data Packets: 6-byte Date & Time (year, month, day, hour, minute, second)
- GPS Data Packets: 6-byte Date (year, month, day) and 6-byte Time (second, minute, hour)

The GPS module sends first the PPS signal and then the NMEA message. At the rising edge of the PPS pulse, the corresponding NMEA message is not yet available. Therefore, the LiDAR extracts date and time from the previous NMEA message and automatically adds 1 full second.

When GPS signal is lost

The LiDAR will still trigger GPS Data Packets by the rising edge of the internal 1 Hz signal. However, the GPS time in the packets will be counted by the internal 1 Hz signal and will drift from the actual GPS time.

3.2.1 Ethernet Header

The source IP is 192.168.1.201 by default. The destination IP address is 255.255.255.255 and in broadcast form.

GPS Ethernet Header: 42 byte	GPS Ethernet Header: 42 bytes			
Field	Bytes	Description		
Ethernet II MAC	12	Destination: broadcast (0xFF: 0xFF: 0xFF: 0xFF: 0xFF)		
		Source: (xx:xx:xx:xx:xx)		
Ethernet Data Packet Type	2	0x08, 0x00		
Internet Protocol	20	Shown in the figure below		
UDP Port Number	4	UDP source port (0x2710, represents 10000)		
		Destination port (0x277E, represents 10110)		
UDP Length	2	0x208, representing 520 bytes (8 bytes more than the size of the GPS UDP Data, shown in Figure 3.1)		
UDP Checksum	2	-		

Figure 3.3 GPS Ethernet Header - Internet Protocol

3.2.2 UDP Data

GPS UDP data: 512 bytes						
Field	Bytes	Description	Description			
GPS Time Data 18		Header	2 bytes	0xFFEE (0xFF first)		
		Date	6 bytes	Year, month, and d	lay (2 bytes each, lower byte first) in ASCII	
		Time	6 bytes	Second, minute, ar	nd hour (2 bytes each, lower byte first) in ASCII	
		Reserved	4 bytes	-		
GPRMC/GPGGA Data	84	NMEA sente	nce that con	ntains date and time		
		ASCII code, v	alid till 2 by	tes after the asterisk	(*)	
		The LiDAR ca	an receive ei	ither GPRMC or GPGG	GA, see Chapter 4 (Web Control - Settings)	
Reserved	404	404 bytes of	404 bytes of 0xDF			
GPS Positioning	1	ASCII code, o	obtained fro	om \$GPRMC or \$GPGG	SA .	
Status						
		When \$GPR	RMC is select	ted:	When \$GPGGA is selected:	
		A (hex = 41)	for Active		0 = invalid	
		V (hex = 56)	for Void		1 = GPS fix (SPS)	
		NUL (hex =	NUL (hex = 0) for GPS being unlocked 2 = DGPS fix			
			3 = PPS fix			
					6 = estimated (dead reckoning)	
PPS Lock Flag	1	1 - locked	0 - uı	nlocked		
Reserved	4	-				

■ GPRMC Data Format

\$GPRMC, <01>, <02>, <03>, <04>, <05>, <06>, <07>, <08>, <09>, <10>, <11>, <12>*hh

Field #	Field	Description
<01>	UTC Time	Hour, minute, and second
		Typically in hhmmss (hour, minute, second) format
<02>	Location Status	A (hex = 41) for Valid Position
		V (hex = 56) for Invalid Position
		NUL (hex = 0) for GPS being unlocked
•••		
<09>	UTC Date	Date information
		Typically in ddmmyy (day, month, year) format
•••		

The LiDAR's GPS data interface is compatible with a variety of GPRMC formats, as long as:

<01> is the hour, minute, and second information

<09> is the date information.

For example, the following two formats are both acceptable:

\$GPRMC,072242,A,3027.3680,N,11423.6975,E,000.0,316.7,160617,004.1,W*67 \$GPRMC,065829.00,A,3121.86377,N,12114.68322,E,0.027,,160617,,,A*74

■ GPGGA Data Format

\$GPGGA, <01>, <02>, <03>, <04>, <05>, <06>, <07>, <08>, <09>, <10>, <11>, <12>*hh

Field #	Field	Description
<01>	UTC Time	Hour, minute, and second
		Typically in hhmmss (hour, minute, second) format
•••		
<06>	GPS Fix Quality	0 = invalid
		1 = GPS fix (SPS)
		2 = DGPS fix
		3 = PPS fix
		6 = estimated (dead reckoning)
•••		

The LiDAR's GPS data interface is compatible with a variety of GPGGA formats, as long as:

<01> is the hour, minute, and second information

For example, the following two formats are both acceptable:

\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 \$GPGGA,134658.00,5106.9792,N,11402.3003,W,2,09,1.0,1048.47,M,-6.27,M,08,AAAA*60

3.2.3 GPS Data Analysis

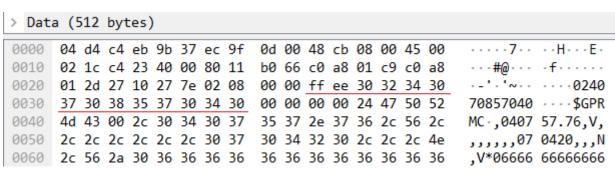


Figure 3.4 GPS Data Packet - UDP Data (Example)

Date

Field	Data (ASCII Code)	Characters	Meaning
Year	0x30 0x32	'0', '2'	20
Month	0x34 0x30	'4', '0'	04
Day	0x37 0x30	'7', '0'	07

Time

Field	Data (ASCII Code)	Characters	Meaning
Second	0x38 0x35	'8', '5'	58
Minute	0x37 0x30	'7', '0'	07
Hour	0x34 0x30	'4', '0'	04

μs Time

4 bytes, in units of $\,\mu$ s, using the same clock source as the GPS Timestamp in Point Cloud Data Packets Reset to 0 at the rising edge of each PPS signal

4 Web Control

Web control is used for setting parameters, checking device info, and upgrading.

To access web control

- 1) Connect the LiDAR to your PC using an Ethernet cable
- 2) Set the IP address according to Section 2.4 (Get Ready to Use)
- 3) Enter this URL into your web browser: 192.168.1.201

NOTE Google Chrome and Mozilla Firefox are recommended.

4.1 Home

Status

Spin Rate	600 rpm
GPS	Unlock
NMEA (GPRMC/GPGGA)	Unlock
PTP	Free Run

Device Info	Device Log
Model	PA64
S/N	PA643CCC53933CCC54
MAC Address	EC:9F:0D:00:46:5A
Software Version	2.10.4
Sensor Firmware Version	4.3.40b
Controller Firmware Version	5.27

NOTE This screenshot may not display the most current version numbers. See Section 4.5 (Upgrade).

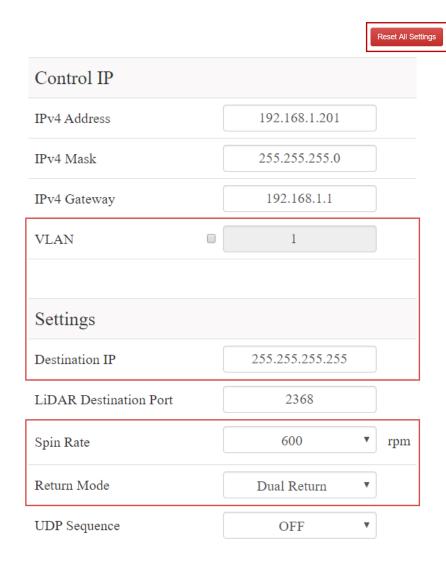
Spin Rate of the motor (revs per minute) = frame rate (Hz) * 60

GPS (PPS) Status

Lock	LiDAR's internal clock is in sync with the GPS
Unlock	Not in sync

NMEA (GPRMC/GPGGA) Status

Lock	After receiving a valid NMEA message
Unlock	Not receiving a valid NMEA message in 2 seconds


PTP Status

Free Run	No PTP master is selected
Tracking	Slave is trying to sync with the selected PTP
	Master, but the absolute offset is over 1 μs
Locked	Absolute offset between Slave and Master is < 1 μs
Frozen (Holdover)	LiDAR has lost connection to the PTP master and is
	attempting to recover it.
	Meanwhile, LiDAR starts drifting from the previous
	clock; when drifting out of specifications, it goes
	back to the Free Run mode.

Device Log

Click to download a .JSON file containing the LiDAR's status, device info, all configurable parameters, and upgrade log.

4.2 Settings

1. Reset All Settings

By clicking the "Reset All Settings" button on the top-right corner, all configurable parameters on web control will be reset to factory defaults.

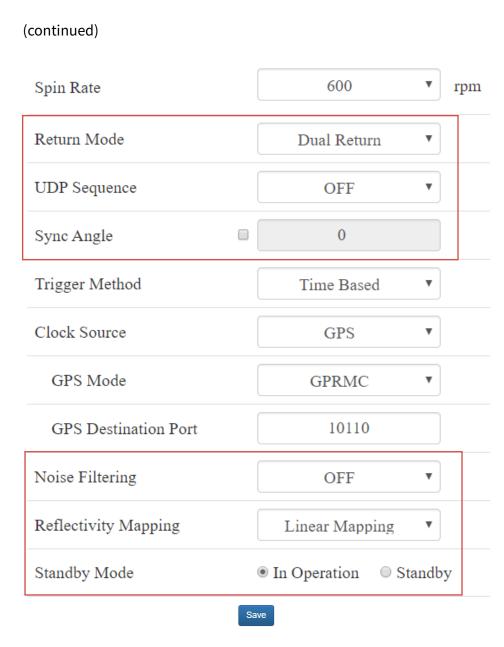
The default values are shown in the screenshots in Section 4.2 (Settings) and Section 4.3.1 (Azimuth FOV - for All Channels).

2. Control IP

VLAN Tagging can be used when the receiving host also supports VLAN function.

- Check the VLAN checkbox and input a VLAN ID (1 to 4094).
- Set the VLAN ID of the receiving host to be the same.

3. Destination IP

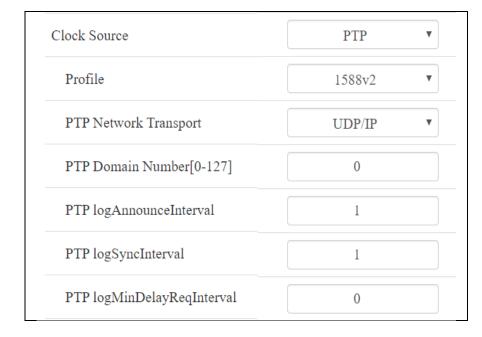

Range: except for 0.0.0.0, 127.0.0.1, and the LiDAR's IP

Mode	Destination IP
Broadcast (default)	255.255.255
Multicast	239.0.0.0~239.255.255.255
Unicast	Same as the PC's IP address

4. LiDAR Functions

Spin Rate	600 rpm / 1200 rpm	
Return Mode	Last / Strongest / Dual Return	

(continued on the next page)



UDP	OFF / ON #1 / ON #2
Sequence.	Point Cloud UDP packets can be labeled with a
	sequence number, see Section 3.1.
	ON #1: UDP sequence increments only within
	the user-specified azimuth FOV in Section 4.3.
	ON #2: Increments at all times.
Sync Angle	0~360 degrees
	By default, the LiDAR's 0° position (see Section
	1.2) is not in sync with GPS PPS or the whole
	second of the PTP clock.
	If syncing is needed, check the checkbox and
	input a sync angle.
Trigger Method	Angle-Based / Time-Based
	Angle-based : lasers fire every 0.2° at 10 Hz or
	0.4° at 20 Hz.
	Time-based: lasers fire every 55.56 us.
Noise Filtering	Mitigation of noise points
Reflectivity	Linear / Nonlinear Mapping
Mapping	Linear : the 1-byte reflectivity in Point Cloud
	Data Packets linearly represents target
	reflectivity (0 to 255%).
	Nonlinear: increases the contrast in low-
	reflectivity region, see the appendix.
Standby Mode	In Operation / Standby
	In Standby mode, the motor stops running and
	lasers stop firing.

5. Clock Source and PTP Parameters

Clock Source	GPS / PTP	
	In PTP mode, the LiDAR does not output GPS	
	Data Packets	

• When GPS is selected as the clock source:

GPS Mode	GPRMC / GPGGA	
	Format of NMEA data received from the	
	external GPS module, see Section 3.2.2	
GPS Destination	10110 (default)	
Port	Port used for sending GPS Data packets	

• When PTP is selected as the clock source:


Profile	1588v2 (default) / 802.1AS	
	IEEE timing and synchronization standard	
PTP Network	UDP/IP (default) or L2	
Transport	1588v2: users can select UDP/IP or L2	
	802.1AS : only supports L2 network	
PTP Domain	Integer from 0 to 127	
Number	Domain attribute of the local clock	

• When using the 1588v2 profile:

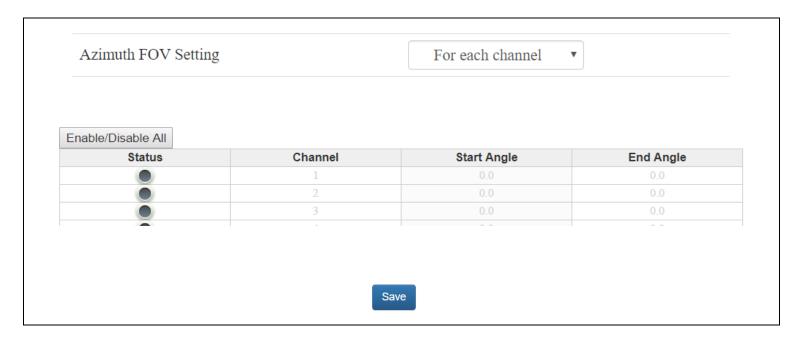
PTP	-2 to 3 log seconds		
logAnnounceIn-	Time interval between Announce messages		
terval	(default: 1)		
PTP	-7 to 3 log seconds		
logSyncInterval	Time interval between Sync messages		
	(default: 1)		
PTP	-7 to 3 log seconds		
logMinDelayReq-	Minimum permitted mean time between		
Interval	Delay_Req messages (default: 0)		

4.3 Azimuth FOV

For Azimuth FOV Setting, users can select one of the three modes.

4.3.1 For all channels

A continuous angle range, specified by a Start Angle and an End Angle, will be applied to all channels. The LiDAR outputs valid data only within the specified range.

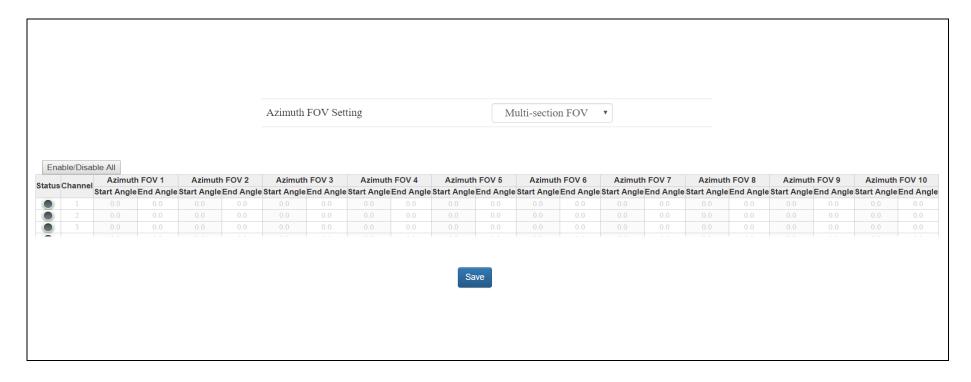

4.3.2 For each channel

Users can configure one continuous angle range for each channel. Each channel outputs valid data only within its specified range.

The "Status" button for each channel is gray by default, indicating that the angle range is [0°, 360°].

To activate the angle range configuration for each channel, click the corresponding button to make it green.

Click the "Enable/Disable All" button to activate/deactivate the angle range configuration for all channels.


4.3.3 Multi-section FOV

Users can configure up to ten continuous angle ranges (i.e. sections) for each channel. Each channel outputs valid data only within its specified ranges.

The "Status" button for each channel is gray by default, indicating that the angle range is [0°, 360°].

To activate the angle range configuration for each channel, click the corresponding button to make it green.

Click the "Enable/Disable All" button to activate/deactivate the angle range configuration for all channels.

4.3.4 Note

- Click "Save" to apply your settings.
- The angles in degrees are accurate to the first decimal place.
- If the Start Angle is larger than the End Angle, then the actual azimuth FOV is the union of [Start Angle, 360°] and [0°, End Angle]. For instance, when the angle range is set to be [270°, 90°], the actual azimuth FOV is [270°, 360°] ∪ [0°, 90°].

4.4 Operation Statistics

The LiDAR's operation time in aggregate and in different temperature ranges are listed, as well as the internal temperature.

Start-up Counts	1
Internal Temperature	32.65°C
System Uptime	0 h 3 min
Total Operation Time	0 h 5 min
Internal Temperature	Operation Time
<-40 °C	0 h 0 min
-40 ~ -20 °C	0 h 0 min
$-20 \sim 0$ °C	0 h 0 min
0 ~ 20 °C	0 h 0 min
$20 \sim 40 \ ^{\circ}\text{C}$	0 h 4 min
$40 \sim 60 ^{\circ}\text{C}$	0 h 1 min
$60 \sim 80$ °C	0 h 0 min
$80 \sim 100$ °C	0 h 0 min
$100\sim120~^{\circ}\mathrm{C}$	0 h 0 min

4.5 Upgrade

The software and firmware versions described in this manual are shown in red below.

Click the "Upload" button, select an upgrade file (provided by Hesai), and confirm your choice in the pop-up window.

When the upgrade is complete, the LiDAR will automatically reboot, and the past versions will be logged in the Upgrade Log.

		Restart
Pandar Upgrade Information		
Software Version	1.45.104T1	
Firmware of Sensor Version	1.45.110	
Firmware of Controller Version	1.45.114T1	
	① Upload	
Upgrade Log		
Number: 1 Software Version: 2.9.7 Firmware of Sensor Version: 4.3.40b Firmware of Controller Version: 5.25		
Number: 2 Software Version: 2.9.7 Firmware of Sensor Version: 4.3.40b Firmware of Controller Version: 5.25		

A software reboot is triggered by clicking the "Restart" button on the top right corner.

Afterwards, the start-up counts in the Operation Statistics page increments by 1.

Software and Controller Firmware

When upgrading, power supply must remain on.

Sensor Firmware

When upgrading, an interruption in the power supply can result in upgrade failure. That is, the Sensor Firmware Version on the Upgrade page becomes "XXXXX" after reboot.

Solution: upgrade Sensor Firmware again, until the Upgrade page displays the correct version number after reboot.

Software upgrade

If the current version is earlier than 2.9.1, please first upgrade to 2.9.1, and then upgrade to higher versions.

Software downgrade

If the current version is between 2.9.6 and 2.10.4, and the system needs to downgrade to a version earlier than 2.7.x, please reset all settings (click the "Reset All Settings" button on the top-right corner of the Settings page) before performing the downgrade.

5 PandarView

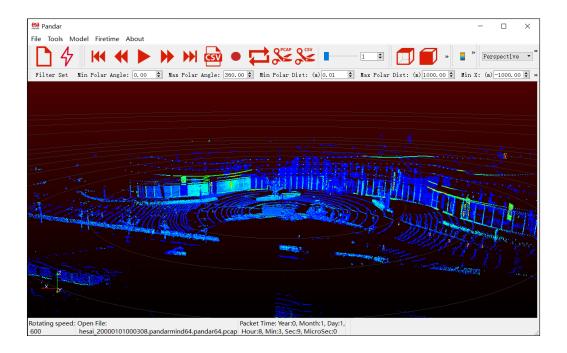
PandarView is a software that records and displays point cloud data from Hesai LiDARs, available in 64-bit Windows 10 and Ubuntu-16.04/18.04.

5.1 Installation

Copy the installation files from the USB disk in the LiDAR's protective case, or download these files from Hesai's official website: www.hesaitech.com/en/download

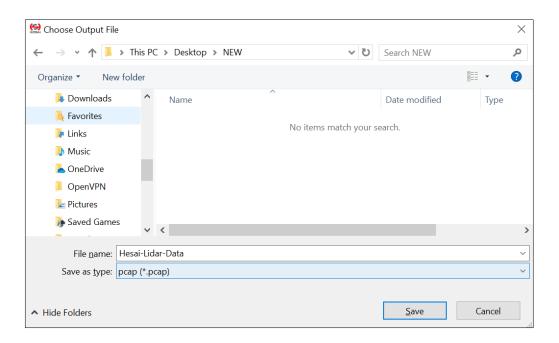
System	Installation Files	tallation Files Installation Steps	
		Before upgrading PandarView to a newer version, please uninstall the	
Windows	PandarViewX64_Release_V1.7.37.msi	current version	
		Double click and install PandarView_Windows using the default settings	
Ubuntu-16.04	PandarViewX64_Release_V1.7. 37.tar.gz	Harris the file and was Danda Wissan Jastallankin	
Ubuntu-18.04	PandarViewX64_18.04_Release_V1.7. 37.tar.gz	Unzip the file and run PandarView_Installer.bin	

This manual describes PandarView 1.7.37. The menu bar and buttons are shown below.

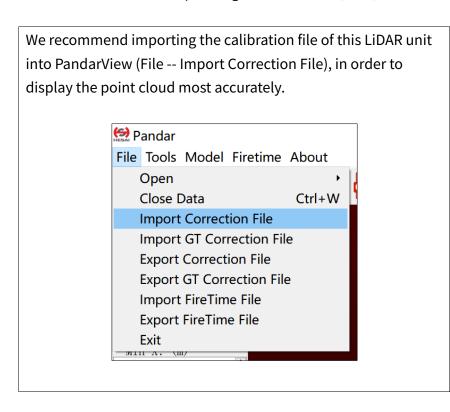


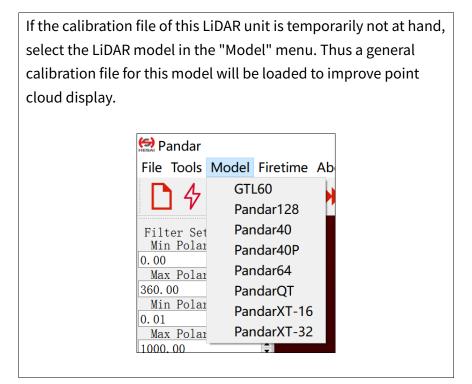
NOTE Users may check the software version from "About" in the menu bar.

5.2 Check Live Data


Set the PC's IP address according to Section 2.4 (Get Ready to Use)

Click on \d and select your LiDAR model to begin receiving data over Ethernet.

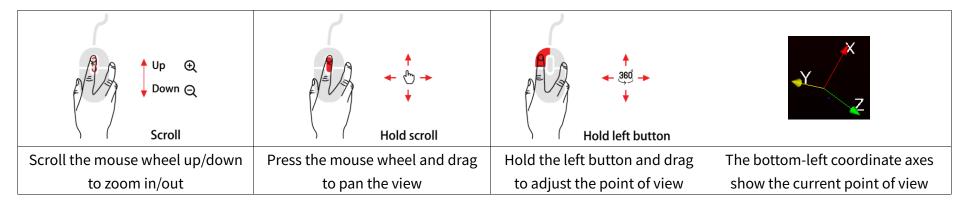

5.3 Record Point Cloud Data


- 1) Click on **(a)** to pop up the "Choose Output File" window.
- 2) Specify the file directory and click on "Save" to begin recording a .PCAP file.
- 3) Click on again to stop recording.

5.4 Play Point Cloud Data

- 1) Open a .PCAP File Click on to pop up the "Choose Open File" window. Select a .PCAP file to open.
- 2) Import a Correction File Each LiDAR unit has a corresponding calibration file (.CSV), see Section 1.3 (Channel Distribution).

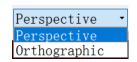
3) Play the .PCAP File


Button	Description					
H	Jump to the beginning of the file					
«	While paused, jump to the previous frame While playing, rewind. May click again to adjust the rewind speed (2x, 3x, 1/2x, 1/4x, and 1x)		3X	1/2X	1/4X	*
> / 	After loading a point cloud file, click to play the file While playing, click to pause					
>>	While paused, jump to the next frame. While playing, forward. May click again to adjust the forward speed (2x, 3x, 1/2x, 1/4x, and 1x)				1/4X	*
	Jump to the end of the file					
<u>G</u> V	Save a single frame to .CSV					
	While playing, this Record button will be gray and unclickable					
	While playing, click to loop playback. Otherwise the player will stop at the end of the file					
PCAP	Save multiple frames to .PCAP Start Frame: 0 • End Frame: 408 •					
S _{CSV}	Save multiple frames to .CSV Specify the start and end frame		rames			
20 🕏	Drag this progress bar or enter a frame number to jump to a specific frame					

5.5 Features

Standard Viewpoints

Mouse Shortcuts



■ 3D Projection and Distance Measurement

PandarView supports perspective projection (default) and orthographic projection.

The distance ruler is available only under orthographic projection:

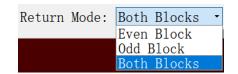
- Click on to enter measurement mode. Hold the Ctrl key and drag the mouse to make a measurement in units of meters
- Click on again to quit

■ Return Mode

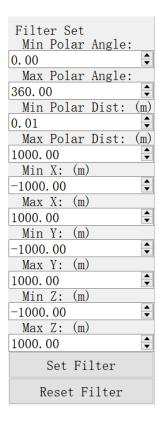
- Both blocks (default): to show the point cloud data from all blocks
- Even/Odd Block: to show the point cloud data from even/odd-number blocks

NOTE See the definition of blocks in Section 3.1.2 (Point Cloud UDP Data)

■ UDP Port


Enter the UDP port number and click "Set".

View Filter


To set the polar/rectangular coordinate range for viewing live point cloud data or a .PCAP file.

- · Click "Set Filter" to apply the settings.
- Click "Reset Filter" to return to default settings (shown in the screenshot).

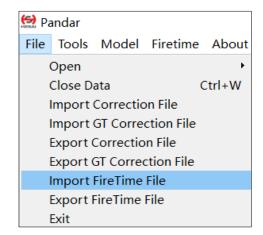
NOTE The filter does not apply to recording and saving .PCAP files.


UDP Port: 2368 Set

■ Distance Reference Circles

Click on **(in)** to show/hide the 12 distance reference circles. The actual distances are marked below.

To change the color and line width of these circles, click on "Tools" in the menu bar and open "Grid Properties".

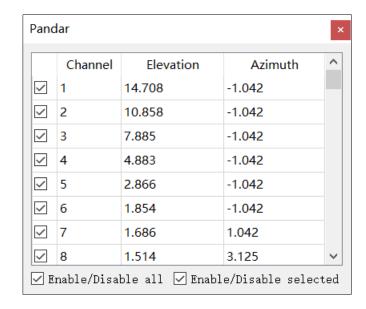


■ Fire Time Correction

After opening a .PCAP file, import the fire time correction file of this LiDAR model into PandarView (File -- Import FireTime File).

Afterwards, click on 🗎 to finetune point cloud display using the fire time correction file.

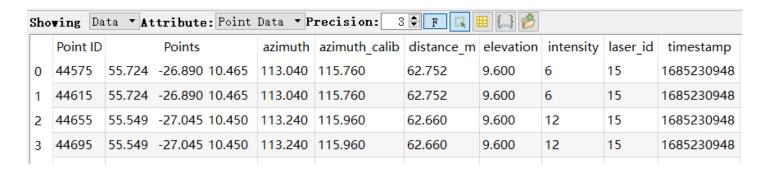
Click on again to cancel the finetuning effects.



Channel Selection

Click on 🥫 to open the Channel Selection box.

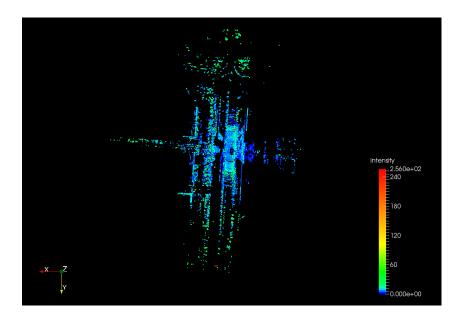
- Check/Uncheck the boxes on the left to show/hide each channel. By default, the point cloud data from all channels are shown.
- Check/Uncheck the "Enable/Disable all" option at the bottom of the table to show/hide all channels.
- When multiple channels are selected by holding the Shift or Ctrl key, check/uncheck the "Enable/Disable selected" option to show/hide multiple channels.


Click on 🔋 again to close the Channel Selection box.

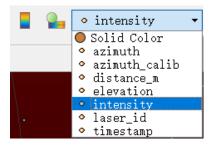
■ Point Selection and Data Table

Click on and drag the mouse over the point cloud to highlight an area of points.

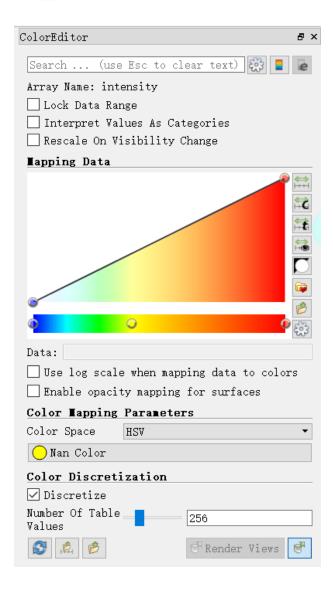
Click on to view the data of the highlighted points, as shown below.


Some of the data fields are defined below:

Field	Description
points	The XYZ coordinates of each point
azimuth	Rotor's current reference angle
azimuth_calib	Azimuth + horizontal angle offset


To cancel the selection, click on again and click on any place outside the selected point cloud area.

Color Schemes


Click on to show the color legend at the lower right corner.

The default color scheme is intensity based. Users can choose from other colors schemes based on azimuth, azimuth_calib, distance, elevation, laser_id, or timestamp.

Click on 🔓 to open or close the Color Editor.

6 Communication Protocol

To receive Hesai LiDAR's PTC (Pandar TCP Commands) and HTTP API Protocols, please contact Hesai technical support.

7 Sensor Maintenance

Storage

Store the product in a dry, well ventilated place. The ambient temperature shall be between -40°C and +85°C, and the humidity below 85%. Please check Section 1.4 (Specifications) for product IP rating, and avoid any ingress beyond that rating.

■ Transport

Package the product in shock-proof materials to avoid damage during transport.

■ Cleaning

Stains on the product's cover lens, such as dirt, fingerprints, and oil, can negatively affect point cloud data quality. Please perform the following steps to remove the stains.

NOTE

- To avoid damaging the optical coating, DO NOT apply pressure when wiping the cover lens
- · Only clean the stained area of the cover lens
- · Check before using a lint-free wipe. If the wipe is stained, use another
- 1) Thoroughly wash your hands or wear a pair of powder-free PVC gloves
- 2) To remove dust, blow dry air onto the cover lens, or use a piece of lint-free wipe to lightly brush across the dusty area To remove persistent stains, move on to the next step

(Continued on the next page)

(Continued)

3) Spray the cover lens with warm, neutral solvent using a spray bottle

Solvent type	99% isopropyl alcohol (IPA)		
	99% ethanol (absolute alcohol)		
	or distilled water		
	NOTE When using IPA or alcohol, please ensure adequate ventilation and keep away from fire.		
Solvent temperature	20 to 25°C		

- 4) When the stains have loosened, dip a piece of lint-free wipe into the solvent made in Step 3, and gently wipe the cover lens back and forth along its curved surface
- 5) Should another cleaning agent be applied to remove certain stains, repeat Steps 3 and 4
- 6) Spray the cover lens with clean water, and gently wipe off the remaining liquid with another piece of lint-free wipe

8 Troubleshooting

In case the following procedures cannot solve the problem, please contact Hesai technical support.

Symptoms	Points to Check		
	Verify that		
Indicator light is off on the	power adapter is properly connected and in good condition		
connection box	connection box is intact		
Connection box	 input voltage and current satisfy the requirements in Section 2.3 (Connection Box) 		
	Power on again to check if the symptom persists.		
	Verify that		
	power adapter is properly connected and in good condition		
Motor is not running	 if a connection box is used, the connection box is intact 		
Motor is not running	• input voltage and current satisfy the requirements in Section 1.4 (Specifications) and 2.3 (Connection Box)		
	 web control can be accessed (see "cannot open web control" on the next page) 		
	Power on again to check if the symptom persists.		
	Verify that		
	Ethernet cable is properly connected (by unplugging and plugging again)		
Motor is running but no	 LiDAR's IP is in the same subnet with the PC's 		
output data is received,	 horizontal FOV is properly set on the Azimuth FOV page of web control 		
neither on Wireshark nor on	• firmware version of the sensor is correctly shown on the Upgrade page of web control		
PandarView	• LiDAR is emitting laser light. This can be checked by using an infrared camera, an infrared sensor card, or a		
	phone camera without infrared filter		
	Power on again to check if the symptom persists.		

(Continued on the next page)

(Continued)

Symptoms	Points to Check	
	Verify that	
Can receive data on	Destination IP and the Destination LiDAR Port are correctly set on the Settings page of web control	
Wireshark but not on	• PC's firewall is disabled, or that PandarView is added to the firewall exceptions	
PandarView	• the latest PandarView version (see the Download page of Hesai's official website) is installed on the PC	
	Power on again to check if the symptom persists.	
	Verify that	
	Ethernet cable is properly connected (by unplugging and plugging again)	
	• LiDAR's IP is in the same subnet with the PC's. Users may use WireShark to check the LiDAR's IP that	
Cannot open web control	broadcasts data packets	
	Afterwards,	
	restart PC, or connect the LiDAR to another PC	
	power on again to check if the symptom persists	
	Verify that	
	 horizontal FOV is properly set on the Azimuth FOV page of web control 	
	motor's spin rate is steady on the Home page of web control	
	• LiDAR's internal temperature is between -20°C and 95°C on the Operation Statistics page of web control	
Abnormal packet size	Ethernet is not overloaded	
(missing packets)	 no switch is connected into the network. The data transmitted from other devices may cause network 	
	congestion and packet loss	
	Afterwards,	
	 connect the PC only to the LiDAR and check for packet loss 	
	power on again to check if the symptom persists	

(Continued on the next page)

(Continued)

Symptoms	Points to Check
	Verify that
	• LiDAR's cover lens is clean. If not, refer to Chapter 7 (Sensor Maintenance) for the cleaning method
	• LiDAR's calibration file is imported, see Section 5.2 (PandarView - Use)
	horizontal FOV is properly set on the Azimuth FOV page of web control
	motor's spin rate is steady on the Home page of web control
Abnormal point cloud	• LiDAR's internal temperature is between -20°C and 95°C on the Operation Statistics page of web control
(obviously misaligned	
points, flashing points, or	Afterwards, check for packet loss
incomplete FOV)	• If no packet is missing while the point cloud flashes, please update PandarView to the latest version (see the
	Download page of Hesai's official website) and restart the PC
	If the point cloud is still abnormal
	Try connecting the LiDAR to another PC
	Power on again to check if the symptom persists
	Verify that
	GPS receiver is properly connected
	PPS signal is connected to the LiDAR
GPS cannot be locked	Destination GPS Port is correct on the Settings page of web control
	• input GPS signals satisfy the electrical requirements in Section 2.2 (Interface) and Section 2.3.1 (Connection
	Box)
	Power on again to check if the symptom persists

Appendix I Channel Distribution

The Horizontal Angle (Azimuth) Offsets and Vertical Angles (Elevation) in the table next page are design values.

The accurate values are in this LiDAR's unit's calibration file, see Section 1.3 (Channel Distribution) and Section 3.1.3 (Point Cloud Data Analysis).

Channel Distribution (To Be Continued)

Channel #	Horizontal Angle Offset	Vertical Angle	Instrument Range	Range (in meters)
in UDP Data	(Azimuth)	(Elevation)	(in meters)	with Reflectivity
01 (Top Beam)	-1.042°	14.882°	130	200@20%
02	-1.042°	11.032°	130	200@20%
03	-1.042°	8.059°	130	200@20%
04	-1.042°	5.057°	130	200@20%
05	-1.042°	3.040°	130	200@20%
06	-1.042°	2.028°	130	200@20%
07	1.042°	1.860°	130	200@20%
08	3.125°	1.688°	230	200@20%
09	5.208°	1.522°	130	200@20%
10	-5.208°	1.351°	230	200@20%
11	-3.125°	1.184°	230	200@20%
12	-1.042°	1.013°	230	200@10%
13	1.042°	0.846°	230	200@10%
14	3.125°	0.675°	230	200@10%
15	5.208°	0.508°	230	200@10%
16	-5.208°	0.337°	230	200@10%
17	-3.125°	0.169°	230	200@10%
18 (Horizontal Beam)	-1.042°	0.000°	230	200@10%
19	1.042°	-0.169°	230	200@10%
20	3.125°	-0.337°	230	200@10%

Channel Distribution (To Be Continued)

Channel #	Horizontal Angle Offset	Vertical Angle	Instrument Range	Range (in meters)
in UDP Data	(Azimuth)	(Elevation)	(in meters)	with Reflectivity
21	5.208°	-0.508°	230	200@10%
22	-5.208°	-0.675°	230	200@10%
23	-3.125°	-0.845°	230	200@10%
24	-1.042°	-1.013°	230	200@10%
25	1.042°	-1.184°	230	200@10%
26	3.125°	-1.351°	230	200@10%
27	5.208°	-1.522°	230	200@10%
28	-5.208°	-1.688°	230	200@10%
29	-3.125°	-1.860°	230	200@10%
30	-1.042°	-2.028°	230	200@10%
31	1.042°	-2.198°	230	200@20%
32	3.125°	-2.365°	230	200@20%
33	5.208°	-2.536°	230	200@20%
34	-5.208°	-2.700°	230	200@20%
35	-3.125°	-2.873°	230	200@20%
36	-1.042°	-3.040°	230	200@20%
37	1.042°	-3.210°	230	200@20%
38	3.125°	-3.375°	230	200@20%
39	5.208°	-3.548°	130	200@20%
40	-5.208°	-3.712°	230	200@20%

Channel Distribution (To Be Continued)

Channel #	Horizontal Angle Offset	Vertical Angle	Instrument Range	Range (in meters)
in UDP Data	(Azimuth)	(Elevation)	(in meters)	with Reflectivity
41	-3.125°	-3.884°	130	200@20%
42	-1.042°	-4.050°	230	200@20%
43	1.042°	-4.221°	130	200@20%
44	3.125°	-4.385°	130	200@20%
45	5.208°	-4.558°	130	200@20%
46	-5.208°	-4.720°	130	200@20%
47	-3.125°	-4.892°	130	200@20%
48	-1.042°	-5.057°	130	200@20%
49	1.042°	-5.229°	130	200@20%
50	3.125°	-5.391°	130	200@20%
51	5.208°	-5.565°	130	200@20%
52	-5.208°	-5.726°	130	200@20%
53	-3.125°	-5.898°	130	200@20%
54	-1.042°	-6.061°	130	200@20%
55	-1.042°	-7.063°	130	200@20%
56	-1.042°	-8.059°	130	200@20%
57	-1.042°	-9.060°	130	200@20%
58	-1.042°	-9.885°	130	200@20%
59	-1.042°	-11.032°	130	200@20%
60	-1.042°	-12.006°	130	200@20%

Channel Distribution (Continued)

Channel #	Horizontal Angle Offset	Vertical Angle	Instrument Range	Range (in meters)
in UDP Data	(Azimuth)	(Elevation)	(in meters)	with Reflectivity
61	-1.042°	-12.974°	130	200@20%
62	-1.042°	-13.930°	130	200@20%
63	-1.042°	-18.889°	130	200@20%
64 (Bottom Beam)	-1.042°	-24.897°	130	200@20%

Appendix II Absolute Time and Laser Firing Time

■ Absolute Time of Point Cloud Data Packets

The absolute time of a Point Cloud Data Packet is the sum of date, time (accurate to the second) and µs time.

- Date and Time can be retrieved either from the current Point Cloud Data Packet (6 bytes of Date & Time), or from the previous GPS Data Packet (6 bytes of Date and 6 bytes of Time).
- μs time can be retrieved from the current Point Cloud Data Packet (4 bytes of Timestamp)

NOTE When using a PTP clock source, the LiDAR does not output GPS Data Packets.

■ End Time of Each Block

The Body of each Point Cloud Data Packet contains 6 data blocks, as detailed in Section 3.1.2 (Point Cloud UDP Data).

Every time the LiDAR sends a command to trigger a round of firing, the measurements are:

- stored in one block in Single Return mode
- stored in two adjacent blocks in Dual Return mode

If the absolute time of a Point Cloud Data Packet is t0, the end time of each block (the time when all the lasers finish firing) can be calculated.

	Block	End Time (μs)
6: 1	Block 6	t0 - 42.58
Single	Block N	t0 - 42.58 - 55.56 * (6 - N)
Return -	Block 3	t0 - 42.58 - 55.56 * 3
	Block 2	t0 - 42.58 - 55.56 * 4
	Block 1	t0 - 42.58 - 55.56 * 5

-	Block	End Time (μs)
	Block 6 & Block 5	t0 - 42.58
Dual	Block 4 & Block 3	t0 - 42.58 - 55.56 * 1
Return Mode	Block 2 & Block 1	t0 - 42.58 - 55.56 * 2
Моде		

■ Firing Time Offset of Each Channel

Assume that the start time of Block m is T(m), $m \in \{1, 2, ..., 6\}$, then the laser firing time of Channel n in Block m is $t(m, n) = T(m) + \Delta t(n)$, $n \in \{1, 2, ..., 64\}$. The lookup table of the firing time offsets $\Delta t(n)$ is shown below.

Firing Sequence	Channel #	Δt(n) (μs)
1	12	-54.668
1	40	-54.668
2	18	-52.7
2	38	-52.7
3	11	-50.732
3	26	-50.732
4	17	-48.764
4	32	-48.764
5	8	-46.796
5	23	-46.796
6	14	-44.828
6	29	-44.828
7	20	-42.86
7	35	-42.86
8	13	-40.892
8	28	-40.892
9	19	-38.924
9	34	-38.924
10	10	-36.956
10	25	-36.956

Firing Sequence	Channel#	Δt(n) (μs)
11	16	-34.988
11	31	-34.988
12	22	-33.02
12	37	-33.02
13	15	-31.052
13	30	-31.052
14	21	-29.084
14	36	-29.084
15	27	-27.116
15	42	-27.116
16	24	-25.148
16	33	-25.148
17	1	-23.18
17	44	-23.18
18	2	-21.876
18	46	-21.876
19	3	-20.572
19	52	-20.572
20	4	-19.268
20	50	-19.268

(Continued on the next page)

(Continued)

Firing Sequence	Channel #	Δt(n) (μs)
21	5	-17.964
21	48	-17.964
22	6	-16.66
22	54	-16.66
23	41	-15.356
23	58	-15.356
24	47	-14.052
24	62	-14.052
25	53	-12.748
25	64	-12.748
26	7	-11.444
26	56	-11.444
27	43	-10.14
27	59	-10.14
28	49	-8.836
28	63	-8.836
29	9	-7.532
29	55	-7.532
30	39	-6.228
30	57	-6.228

Firing Sequence	Channel#	Δt(n) (μs)
31	45	-4.924
31	60	-4.924
32	51	-3.62
32	61	-3.62

Appendix III PTP Protocol

The Precision Time Protocol (PTP) is used to synchronize clocks across a computer network. It can achieve sub-microsecond clock accuracy.

■ LiDAR Connection When Using PTP

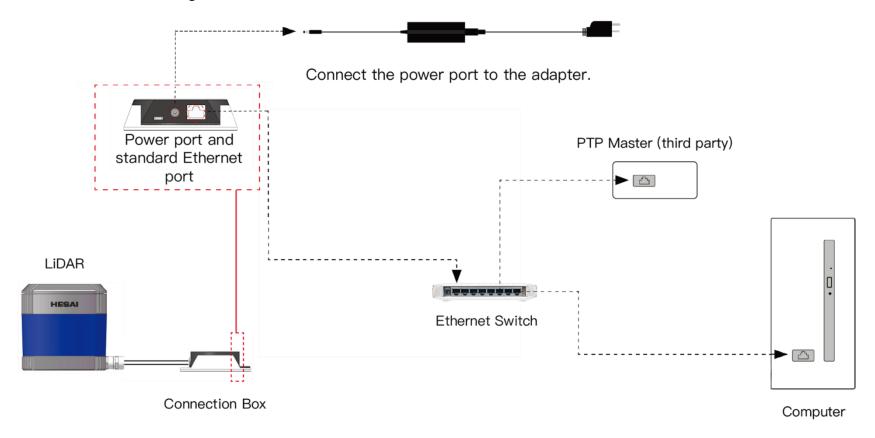


Figure III.1 Connection When Using PTP

■ Absolute Packing Time When Using PTP

To use PTP as the clock source, connect a third-party PTP master device to get the absolute time.

NOTE

- PTP master is a third-party device and is not included with the LiDAR.
- The LiDAR works as a PTP slave device and the PTP protocol is Plug&Play. No additional setup is required.
- When using a PTP clock source, the LiDAR does not output GPS Data Packets.
- The timestamps and Date & Time fields in Point Cloud Data Packets strictly follow the PTP master device. Certain PTP master devices may have a specified offset from the Date & Time output by the LiDAR. Please verify the configuration and calibration of your PTP master device.
- If a PTP clock source is selected but no PTP master device is available, the LiDAR will count the time from an invalid past time. If a PTP clock source is supplied and later stopped, the LiDAR will continue to count the time with an internal clock.

Appendix IV Phoenix Contact

Phoenix Contact can be used as the LiDAR's communication connector, in place of the default Lemo Contact in Section 2.2 (Interfaces). Phoenix part number:

SACC-M12MS-8CON-PG 9-SH - 1511857 (male, on the LiDAR)

SACC-M12FS-8CON-PG 9-SH - 1511860 (female, on the connecting box)

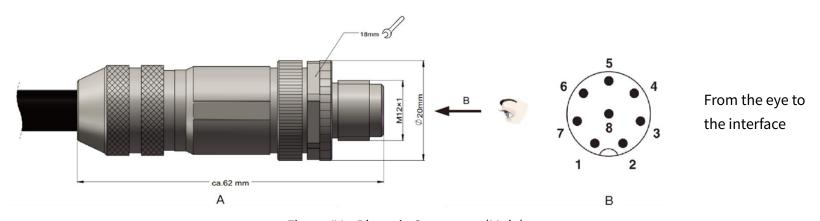


Figure IV.1 Phoenix Connector (Male)

Pin #	Signal	Color	Voltage
1	Ethernet RX-	Blue	-1 V to 1 V
2	Ethernet RX+	Light Blue (Blue/White)	-1 V to 1 V
3	Ethernet TX-	Orange	-1 V to 1 V
4	Ethernet TX+	Light Orange (Orange/White)	-1 V to 1 V
5	GPS Serial Data	White	-13 V to +13 V
6	GPS PPS	Yellow	3.3 V/5 V
7	+12 V	Red	12 V
8	Ground (Return)	Black	-

Appendix V Nonlinear Reflectivity Mapping

By default, the 1-byte reflectivity data in Point Cloud Data Packets linearly represents target reflectivity from 0 to 255%.

Alternatively, users may choose the Nonlinear Mapping mode, see Chapter 4 (Web Control - Settings).

The nonlinear relationship is detailed below.

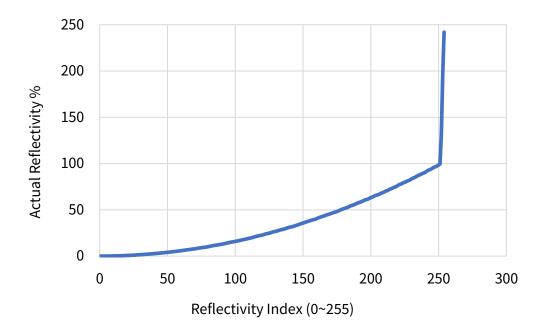


Figure V.1 Nonlinear Reflectivity Mapping

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
0	0	20	0.67	40	2.69	60	5.9
1	0.01	21	0.75	41	2.81	61	6.1
2	0.02	22	0.81	42	2.94	62	6.3
3	0.03	23	0.87	43	3.07	63	6.5
4	0.04	24	0.95	44	3.21	64	6.7
5	0.05	25	1.05	45	3.36	65	6.9
6	0.08	26	1.15	46	3.5	66	7.1
7	0.11	27	1.25	47	3.64	67	7.3
8	0.13	28	1.35	48	3.79	68	7.5
9	0.15	29	1.45	49	3.93	69	7.7
10	0.19	30	1.55	50	4.08	70	7.9
11	0.23	31	1.65	51	4.25	71	8.12
12	0.26	32	1.75	52	4.42	72	8.37
13	0.29	33	1.85	53	4.58	73	8.62
14	0.34	34	1.95	54	4.75	74	8.87
15	0.39	35	2.06	55	4.92	75	9.1
16	0.44	36	2.19	56	5.1	76	9.3
17	0.5	37	2.31	57	5.3	77	9.5
18	0.56	38	2.44	58	5.5	78	9.7
19	0.61	39	2.56	59	5.7	79	9.9

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
80	10.17	100	15.87	120	22.83	140	31.17
81	10.5	101	16.17	121	23.25	141	31.5
82	10.83	102	16.5	122	23.75	142	31.83
83	11.12	103	16.83	123	24.17	143	32.25
84	11.37	104	17.17	124	24.5	144	32.75
85	11.62	105	17.5	125	24.83	145	33.25
86	11.87	106	17.83	126	25.25	146	33.75
87	12.12	107	18.17	127	25.75	147	34.25
88	12.37	108	18.5	128	26.17	148	34.75
89	12.62	109	18.83	129	26.5	149	35.25
90	12.87	110	19.17	130	26.83	150	35.75
91	13.17	111	19.5	131	27.25	151	36.25
92	13.5	112	19.83	132	27.75	152	36.75
93	13.83	113	20.25	133	28.17	153	37.25
94	14.17	114	20.75	134	28.5	154	37.75
95	14.5	115	21.17	135	28.83	155	38.25
96	14.83	116	21.5	136	29.25	156	38.75
97	15.12	117	21.83	137	29.75	157	39.17
98	15.37	118	22.17	138	30.25	158	39.5
99	15.62	119	22.5	139	30.75	159	39.83

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
160	40.5	180	51.25	200	63.25	220	76.5
161	41.25	181	51.75	201	63.75	221	77.25
162	41.75	182	52.25	202	64.5	222	77.75
163	42.25	183	52.75	203	65.25	223	78.5
164	42.75	184	53.5	204	65.75	224	79.25
165	43.25	185	54.25	205	66.25	225	79.75
166	43.75	186	54.75	206	66.75	226	80.5
167	44.25	187	55.25	207	67.5	227	81.25
168	44.75	188	55.75	208	68.25	228	81.75
169	45.25	189	56.5	209	68.75	229	82.5
170	45.75	190	57.25	210	69.5	230	83.5
171	46.25	191	57.75	211	70.25	231	84.25
172	46.75	192	58.25	212	70.75	232	84.75
173	47.25	193	58.75	213	71.5	233	85.5
174	47.75	194	59.5	214	72.25	234	86.5
175	48.25	195	60.25	215	72.75	235	87.25
176	48.75	196	60.75	216	73.5	236	87.75
177	49.5	197	61.25	217	74.25	237	88.5
178	50.25	198	61.75	218	74.75	238	89.25
179	50.75	199	62.5	219	75.5	239	89.75

Nonlinear Reflectivity Mapping (Continued)

Reflectivity Index	Reflectivity		
(0~255)	(%)		
240	90.5		
241	91.5		
242	92.5		
243	93.25		
244	93.75		
245	94.5		
246	95.5		
247	96.25		
248	96.75		
249	97.5		
250	98.5		
251	99.5		
252	132		
253	196		
254	242		

Appendix VI Certification Info

FCC Declaration

FCC ID: 2ASO2PANDAR

FCC Warning

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

NOTE Any changes or modifications not expressly approved by the grantee of this device could void the user's authority to operate the equipment.

■ IC Statement

This device complies with Industry Canada licence-exempt RSS standard(s).

Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence.

L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radio électrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Appendix VII Support and Contact

■ Technical Support

If your question is not addressed in this manual, please contact us at:

service@hesaitech.com
www.hesaitech.com
https://github.com/HesaiTechnology

NOTE Please leave your questions under the corresponding GitHub projects.

Legal Notice

Copyright 2021 by Hesai Technology. All rights reserved. Use or reproduction of this manual in parts or its entirety without the authorization of Hesai is prohibited.

Hesai Technology makes no representations or warranties, either expressed or implied, with respect to the contents hereof and specifically disclaims any warranties, merchantability, or fitness for any particular purpose. Further, Hesai Technology reserves the right to revise this publication and to make changes from time to time in the contents hereof without obligation to notify any person of such revision or changes.

HESAI and HESAI logo are registered trademarks of Hesai Technology. All other trademarks, service marks, and company names in this manual or on Hesai's official website are properties of their respective owners.

The software included in this product contains copyright that is registered under Hesai Technology. Any third party is not permitted, except as expressly permitted by licensor or expressly required by applicable law, to decompile, reverse engineer, disassemble, modify, rent, lease, loan, distribute, sublicense, create derivative works based on the whole or any part of the software.

MAP IV, Inc.

sales: contact@map4.jp

Website: https://www.map4.jp

Address: #2702 JR Gate Tower, 1-1-3 Meieki, Nakamura-ku, Nagoya

Website