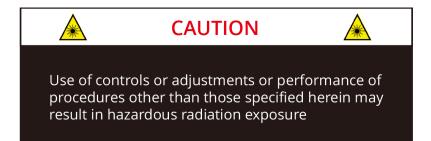


Pandar128 128-Channel Mechanical LiDAR User Manual

K YVg]hY

Contents

Sa	Safety Notice1			
1	Introd	uction4		
	1.1	Operating Principle		
	1.2	LiDAR Structure		
	1.3	Channel Distribution6		
	1.4	Specifications		
2	Setup			
	2.1	Mechanical Installation8		
	2.2	Interfaces		
	2.3	Connection Box (Optional)16		
	2.4	Get Ready to Use		
3	Data S	Structure		
	3.1	Point Cloud Data Packet		
	3.2	GPS Data Packet		
4	Web C	ontrol		
	4.1	Home		
	4.2	Settings		
	4.3	Azimuth FOV		


4.4	High Resolution	47
4.5	Operation Statistics	
4.6	Monitor	49
4.7	Upgrade	50
5 Pano	JarView	
5.1	Installation	51
5.2	Use	52
5.3	Features	55
6 Com	munication Protocol	60
7 Sens	or Maintenance	61
8 Trou	bleshooting	63
Appen	dix I Channel Distribution	66
Appen	dix II Absolute Time and Laser Firing Time	74
Appen	dix III PTP Protocol	
Appen	dix IV Nonlinear Reflectivity Mapping	
Appen	dix V Support and Contact	

Safety Notice

PLEASE READ AND FOLLOW ALL INSTRUCTIONS CAREFULLY AND CONSULT ALL RELEVANT NATIONAL AND INTERNATIONAL SAFETY REGULATIONS FOR YOUR APPLICATION.

Caution

To avoid violating the warranty and to minimize the chances of getting electrically shocked, please do not disassemble the product. The product must not be tampered with and must not be changed in any way. There are no user-serviceable parts inside the product. For repairs and maintenance inquiries, please contact an authorized Hesai Technology service provider.

CLASS 1 LASER PRODUCT

This product complies with IEC 60825-1:2014 (Ed.3) and comlies with FDA performance standards for laser products except for conformance with IEC 60825-1 Ed.3, as described in Laser Notice No.56, dated May 8, 2019.

Laser Safety Notice - Laser Class 1

This device satisfies the requirements of

- IEC 60825-1:2014
- 21 CFR 1040.10 and 1040.11 except for deviations (IEC 60825-1 Ed.3) pursuant to Laser Notice No.56, dated May 8, 2019

NEVER LOOK INTO THE TRANSMITTING LASER THROUGH A MAGNIFYING DEVICE (MICROSCOPE, EYE LOUPE, MAGNIFYING GLASS, ETC.)

Safety Precautions

In all circumstances, if you suspect that the product malfunctions or is damaged, stop using it immediately to avoid potential hazards and injuries. Contact an authorized Hesai Technology service provider for more information on product disposal.

Handling

This product contains metal, glass, plastic, as well as sensitive electronic components. Improper handling such as dropping, burning, piercing, and squeezing may cause damage to the product.

In case the product is dropped, STOP using the product immediately and contact Hesai technical support.

Enclosure

This product contains high-speed rotating parts. To avoid potential injuries, DO NOT operate the product if the enclosure is loose or damaged. To ensure optimal performance, do not touch the product's enclosure with bare hands. If the enclosure is already stained, please refer to the cleaning method in the Sensor Maintenance chapter of user manuals.

Eye Safety

Although the product meets Class 1 eye safety standards, DO NOT look into the transmitting laser through a magnifying product (microscope, eye loupe, magnifying glass, etc.). For maximum self-protection, avoid looking directly at the product when it is in operation.

Repair

DO NOT open and repair the product without direct guidance from Hesai Technology. Disassembling the product may cause degraded performance, failure in water resistance, or potential injuries to the operator.

Power Supply

Use only the cables and power adapters provided by Hesai Technology. Only the power adapters that meet the product's power requirements and applicable safety standards can be used. Using damaged cables, adapters or supplying power in a humid environment can result in fire, electric shock, personal injuries, product damage, or property loss.

Hot Surface

During or after a period of operation, DO NOT touch the product's enclosure with your skin. Such direct contact with the hot surface can result in discomfort or even burns. If you incorporate this LiDAR product into your product(s), you should also communicate the hot surface risks to the intended users of your product(s).

Vibration

Strong vibration may cause damage to the product and should be avoided. If you need the mechanical vibration and shock limits of this product, please contact Hesai technical support.

Radio Frequency Interference

Please observe the signs and notices on the product that prohibit or restrict the use of electronic devices. Although the product is designed, tested, and manufactured to comply with the regulations on RF radiation, the radiation from the product may still influence electronic devices.

Medical Device Interference

Some components in the product can emit electromagnetic fields, which may interfere with medical devices such as cochlear implants, heart pacemakers, and defibrillators. Consult your physician and medical device manufacturers for specific information regarding your medical device(s) and whether you need to keep a safe distance from the product. If you suspect that the product is interfering with your medical device, stop using the product immediately.

Explosive Atmosphere and Other Air Conditions

Do not use the product in any area where potentially explosive atmospheres are present, such as high concentrations of flammable chemicals, vapors, or particulates (including particles, dust, and metal powder) in the air. Exposing the product to high concentrations of industrial chemicals, including liquefied gases that are easily vaporized (such as helium), can damage or weaken the product's function. Please observe all the signs and instructions on the product.

Light Interference

Some precision optical instruments may be interfered by the laser light emitted from the product.

1 Introduction

This manual describes the specifications, installation, and data format of Pandar128.

This manual is under constant revision. To obtain the latest version, please visit the Download page of Hesai's official website, or contact Hesai technical support.

1.1 Operating Principle

Distance Measurement: Time of Flight (ToF)

- 1) A laser diode emits a beam of ultrashort laser pulses onto the target object.
- 2) The laser pulses are diffusely reflected after hitting the target object. The returning beam is detected by an optical sensor.
- 3) Distance to the object can be accurately measured by calculating the time between laser emission and receipt.

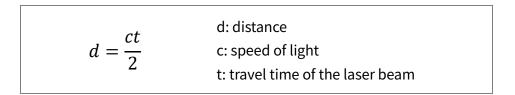
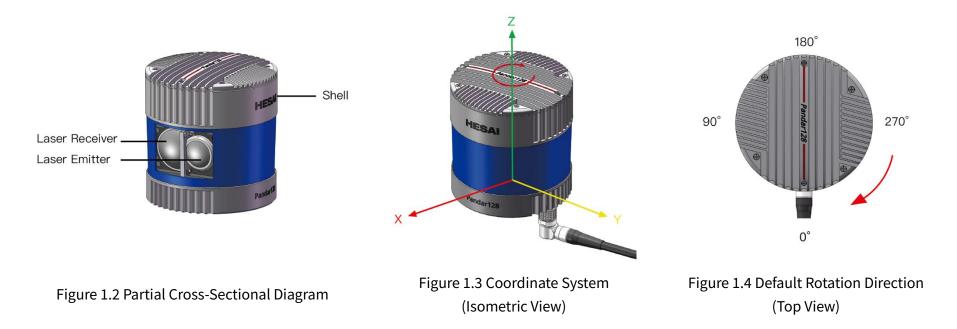



Figure 1.1 Distance Measurement Using Time of Flight

1.2 LiDAR Structure

128 pairs of laser emitters and receivers are attached to a motor that rotates horizontally.

The LiDAR's coordinate system is illustrated in Figure 1.3. Z-axis is the axis of rotation.

By default, the LiDAR rotates clockwise in the top view. To select counterclockwise rotation, see Section 4.2 (Web Control - Settings).

The origin is shown as a red dot in Figure 1.6 on the next page. All measurements are relative to the origin.

Each laser channel has an intrinsic horizontal angle offset. When Channel 42 passes the zero degree position in Figure 1.4, the azimuth data in the corresponding UDP data block will be 0°.

1.3 Channel Distribution

The vertical resolution is

- 0.125° from Channel 26 to Channel 90
- 0.5° from Channel 2 to Channel 26, as well as from Channel 90 to Channel 127
- 1° between Channel 1 and Channel 2, as well as between Channel 127 and Channel 128
- detailed in Appendix I (Channel Distribution)

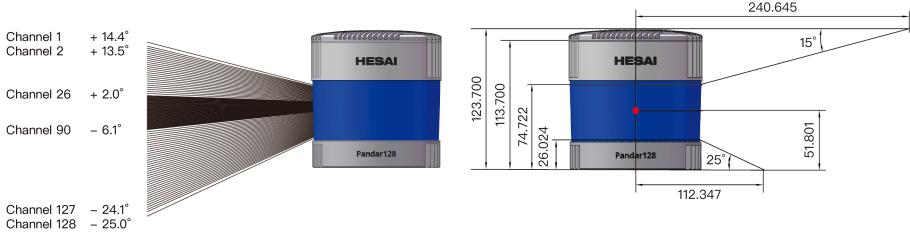


Figure 1.5 Channel Vertical Distribution

Figure 1.6 Laser Firing Position (Unit: mm)

Each channel has an intrinsic angle offset, both horizontally and vertically.

The offsets are recorded in this LiDAR unit's calibration file, which is provided when shipping the unit.

In case you need to obtain the file again:

- Send this TCP command *PTC_COMMAND_GET_LIDAR_CALIBRATION*, as described in Hesai TCP API Protocol (Chapter 6).
- Or contact a sales representative or technical support engineer from Hesai.

1.4 Specifications

SENSOR	
Scanning Method	Mechanical Rotation
Channel	128
Range Capability	0.3 to 200 m (at 10% reflectivity)
Range Accuracy	\pm 8 cm (0.3 to 0.5 m, each channel)
	± 5 cm (0.5 to 1 m, each channel)
	\pm 2 cm (1 to 200 m, average)
FOV (Horizontal)	360°
Resolution (Horizontal)	Configurable on-the-fly
	0.1°/0.2° (10 Hz)
	0.2°/0.4° (20 Hz)
FOV (Vertical)	40° (-25° to +15°)
Resolution (Vertical)	0.125° (-6° to +2°)
	0.5° (+2° to +14°, -6° to -24°)
	1° (+14° to +15°, -24° to -25°)
Frame Rate	10 Hz, 20 Hz
Returns	Single Return (Last/Strongest/First)
	Dual Return (Last and Strongest)
	Dual Return (Last and First)
	Dual Return (First and Strongest)
CERTIFICATIONS	

MECHANICAL/ELECTRICAL/OPERATIONAL			
Wavelength	905 nm		
Laser Class	Class 1 Eye Safe		
Ingress Protection	IP6K7 & IP6K9K		
Dimensions	Height: 123.7 mm		
	Top/Bottom Diameter: 118.0 / 116.0 mm		
Operating Voltage	DC 9 to 48 V		
Power Consumption	27 W / 20 W (at $0.1^{\circ}/0.2^{\circ}$ horizonal resolution)		
Operating Temperature	-40°C to 85°C		
Weight	1.63 kg		
DATA I/O			
Data Transmission	UDP/IP Ethernet, 1000Base-TX or 1000Base-T1		
Data Transmission Data Outputs	UDP/IP Ethernet, 1000Base-TX or 1000Base-T1 Distance, Azimuth Angle, Intensity		
	. ,		
Data Outputs	Distance, Azimuth Angle, Intensity		
Data Outputs	Distance, Azimuth Angle, Intensity Single Return: 3,456,000 points/sec (max)		
Data Outputs Valid Data Points	Distance, Azimuth Angle, Intensity Single Return: 3,456,000 points/sec (max) Dual Return: 6,912,000 points/sec (max)		
Data Outputs Valid Data Points	Distance, Azimuth Angle, Intensity Single Return: 3,456,000 points/sec (max) Dual Return: 6,912,000 points/sec (max) Single Return: 117.28 Mbps (max)		
Data Outputs Valid Data Points Point Cloud Data Rate	Distance, Azimuth Angle, Intensity Single Return: 3,456,000 points/sec (max) Dual Return: 6,912,000 points/sec (max) Single Return: 117.28 Mbps (max) Dual Return: 234.56 Mbps (max)		
Data OutputsValid Data PointsPoint Cloud Data RateClock Source	 Distance, Azimuth Angle, Intensity Single Return: 3,456,000 points/sec (max) Dual Return: 6,912,000 points/sec (max) Single Return: 117.28 Mbps (max) Dual Return: 234.56 Mbps (max) GPS / PTP 		

NOTE Range Capability: measured under 100 klux ambient intensity. Range accuracy may vary with range, temperature, and target reflectivity.NOTE The range and horizontal resolution of each channel is shown in Appendix I (Channel Distribution).

2 Setup

2.1 Mechanical Installation

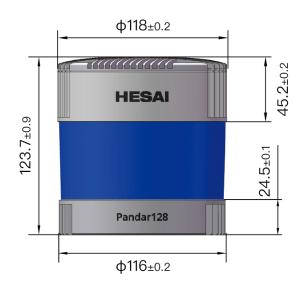


Figure 2.1 Front View (Unit: mm)

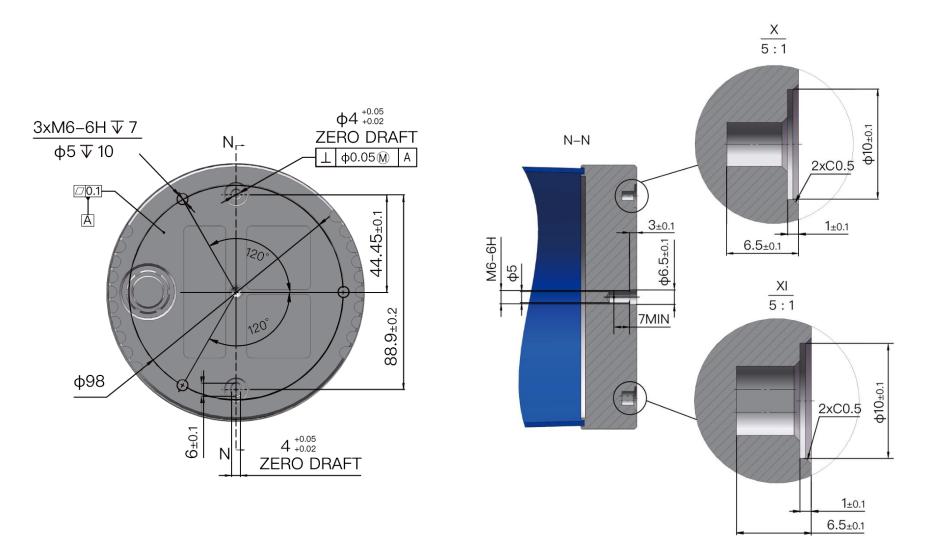
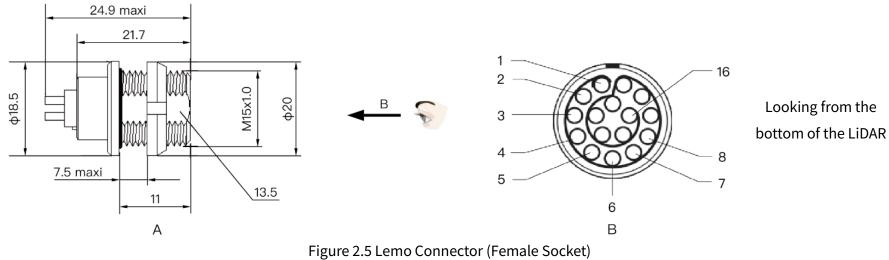


Figure 2.2 Bottom View (Unit: mm)

Quick Installation


Figure 2.3 Quick Installation

Stable Installation

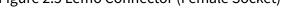


Figure 2.4 Stable Installation

2.2 Interfaces

Lemo part number: EEG.2T.316.CLN (female socket, on the LiDAR)

2.2.1 Pin Description

1000Base-TX

No.	Signal	Voltage
1	Ground (Return)	0 V
2	Ground (Return)	0 V
3	Ethernet BI_DC-	-1 to 1 V
4	Ethernet BI_DC+	-1 to 1 V
5	Ethernet BI_DB-	-1 to 1 V
6	Ethernet BI_DB+	-1 to 1 V
7	Ethernet BI_DA-	-1 to 1 V
8	Ethernet BI_DA+	-1 to 1 V

No.	Signal	Voltage
9	GPS Serial Data	-13 to +13 V
10	Power	9 to 48 V
11	Power	9 to 48 V
12	GPS PPS	3.3 / 5 V
13	Ethernet BI_DD-	-1 to 1 V
14	Ethernet BI_DD+	-1 to 1 V
15	Index	0 to 3.3 V
16	Encoder	0 to 3.3 V

Automotive 1000Base-T1

No.	Signal	Voltage
1	Ground (Return)	0 V
2	Ground (Return)	0 V
3	Ethernet_Data-	-1 to 1 V
4	Ethernet_Data+	-1 to 1 V
5	-	-
6	-	-
7	-	-
8	-	-

No.	Signal	Voltage
9	GPS Serial Data	-13 to +13 V
10	Power	9 to 48 V
11	Power	9 to 48 V
12	GPS PPS	3.3 / 5 V
13	-	-
14	-	-
15	Index	0 to 3.3 V
16	Encoder	0 to 3.3 V

NOTE For the GPS PPS signal, pulse width is recommended to be over 1 ms, and the cycle is 1 s (rising edge to rising edge)
 NOTE Before connecting or disconnecting an external GPS signal (either using the cable's GPS wire or via the connection box's GPS port), make sure the LiDAR is powered off. If the LiDAR has to stay powered on, make sure to:

• ground yourself in advance

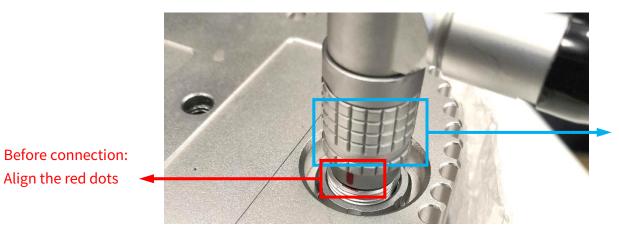
• avoid touching the GPS wire or GPS port with bare hands

2.2.2 Cables

OD (outside diameter) = 7.70 ± 0.30 mm Minimum bend radius: 5 * OD

NOTE To avoid damaging the cable, do not bend the cable at the cable gland.

2.2.3 Connector Use


Connection	Disconnection
Turn off the power source	Turn off the power source
Align the red dots on the connector shells	• Pull the release sleeve on the male connector to its outermost position and hold there
 Push the plug straight into the socket 	 Pull the plug from the socket

NOTE

• DO NOT attempt to force open a connection by pulling on the cables or the shells, or by twisting the connectors in any way. Doing so can loosen the connectors' shells, or even damage the contacts.

• In case a connector's shell is accidentally pulled off, stop using the connector and contact Hesai technical support.

• DO NOT attempt to assemble the connector's shell and cable collet; DO NOT connect a connector without its shell. Doing so may damage the LiDAR's circuits.

Before disconnection: Pull the release sleeve to its outermost position and hold there

Figure 2.6 Lemo Connection/Disconnection

2.3 Connection Box (Optional)

Users may connect the LiDAR directly or using the connection box.

The connection box has a power port, a GPS port, and a standard Ethernet port.

Lemo part number: FSG.2T.316.CLAC80Z (male plug, on the connection box)

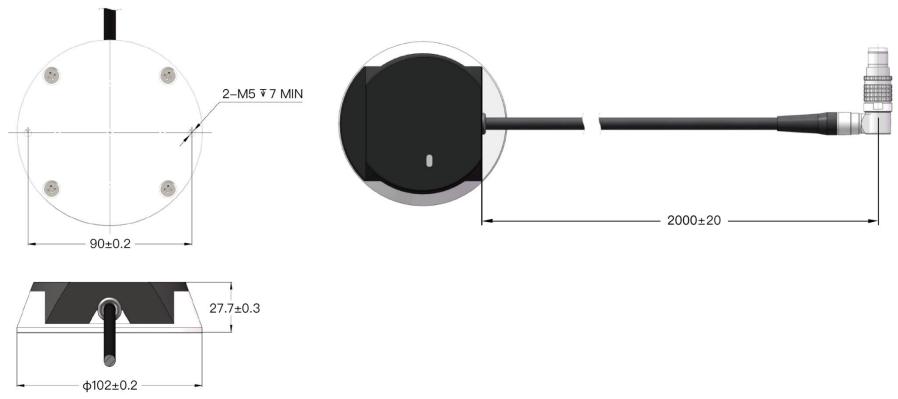


Figure 2.7 Connection Box (Unit: mm)

1000Base-TX

No.	Signal	Voltage	Wire Color
1	Ground (Return)	0 V	Black
2	Ground (Return)	0 V	White
3	Ethernet BI_DC-	-1 to 1 V	Blue
4	Ethernet BI_DC+	-1 to 1 V	Blue/White
5	Ethernet BI_DB-	-1 to 1 V	Green
6	Ethernet BI_DB+	-1 to 1 V	Green/White
7	Ethernet BI_DA-	-1 to 1 V	Orange
8	Ethernet BI_DA+	-1 to 1 V	Orange/White

No.	Signal	Voltage	Wire Color
9	GPS Serial Data	-13 to +13 V	Yellow
10	Power	9 to 48 V	Red
11	Power	9 to 48 V	Green
12	GPS PPS	3.3 / 5 V	Purple
13	Ethernet BI_DD-	-1 to 1 V	Brown
14	Ethernet BI_DD+	-1 to 1 V	Brown/White
15	Index	0 to 3.3 V	Gray
16	Encoder	0 to 3.3 V	Gray/White

Automotive 1000Base-T1

No.	Signal	Voltage	Wire Color
1	Ground (Return)	0 V	Black
2	Ground (Return)	0 V	White
3	Ethernet_Data-	-1 to 1 V	Blue
4	Ethernet_Data+	-1 to 1 V	Blue/White
5	-	-	
6	-	-	
7	-	-	
8	-	-	

No.	Signal	Voltage	Wire Color
9	GPS Serial Data	-13 to +13 V	Yellow
10	Power	9 to 48 V	Red
11	Power	9 to 48 V	Green
12	GPS PPS	3.3 / 5 V	Purple
13	-	-	
14	-	-	
15	Index	0 to 3.3 V	Gray
16	Encoder	0 to 3.3 V	Gray/White

2.3.1 Connection Box Interfaces

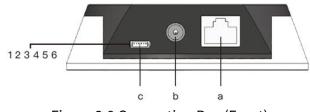


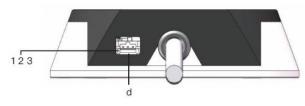
Figure 2.8 Connection Box (Front)

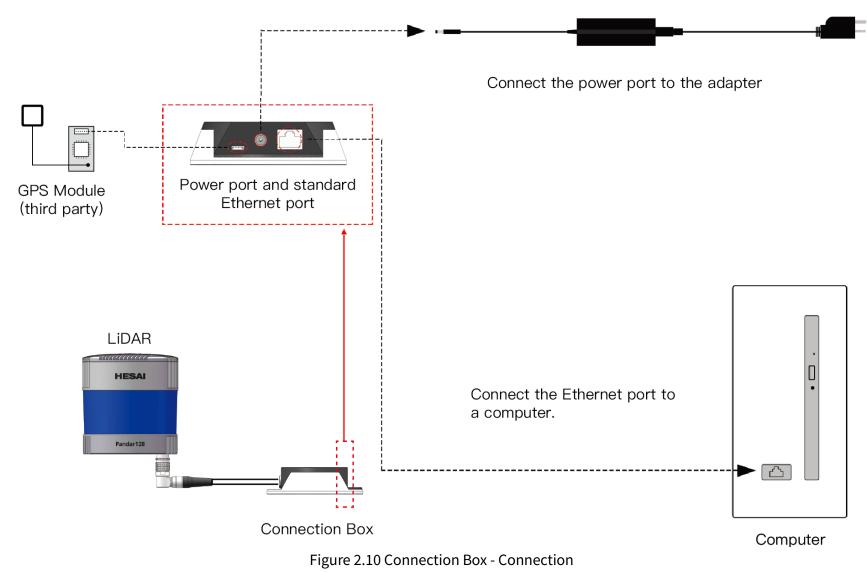
Port #	Port Name	Description		
а	Standard Ethernet Port	RJ45, 1000 Mbps Ethernet		
b	Power Port	Use DC-005 DC power adapter		
		External power supply: 9 to 48 V, 27 W		
с	GPS Port	Connector part number: JST, SM06B-SRSS-TB		
		Recommended connector for the external GPS module: JST, SHR-06V-S-B		
		Voltage standard: RS232 Baud rate: 9600 bps		

The GPS port pin numbers are 1 to 6 from left to right, defined as follows:

Pin #	Direction	Pin Description	Requirements
1	Input	PPS (pulse-per-second) signal for synchronization	TTL level 3.3 V/5 V
			Recommended pulse width: ≥1 ms
			Cycle: 1 s (from rising edge to rising edge)
2	Output	Power for the external GPS module	5 V
3	Output	Ground for the external GPS module	-
4	Input	Receiving serial data from the external GPS module	RS232 level
5	Output	Ground for the external GPS module	-
6	-	Reserved	-

For Pandar128 LiDARs with Lemo connectors, a trigger port is added to output external trigger signals.




Figure 2.9 Connecting Box (Back)

Port #	Port Name	Description	
d	Trigger Port	Connector (socket): Molex, LLC 5023520300	
		Recommended wire connector (plug): Molex, LLC 5023510300	
		Voltage: 0 V to 3.3 V	
		Signal type: pulse	
		Max. current output level: 12 mA	

Pin Description for the trigger port:

Pin #	Direction	Pin Description	
1	Input	GND, to ground the external trigger signal	
2	Output-Encoder	Trigger signal: outputs one pulse when the LiDAR rotates 0.05°	
		Pulse width: 8.31 μs @ 600 RPM, 4.17 μs @ 1200 RPM	
3	Output-Index	Trigger signal: outputs one pulse when Channel 42 passes the LiDAR's 180° position (see Figure 1.4)	
		Pulse width: 2.87 μs @ 600 RPM, 1.44 μs @ 1200 RPM	

2.3.2 Connection

NOTE Refer to Appendix III (PTP Protocol) when PTP is used.

2.4 Get Ready to Use

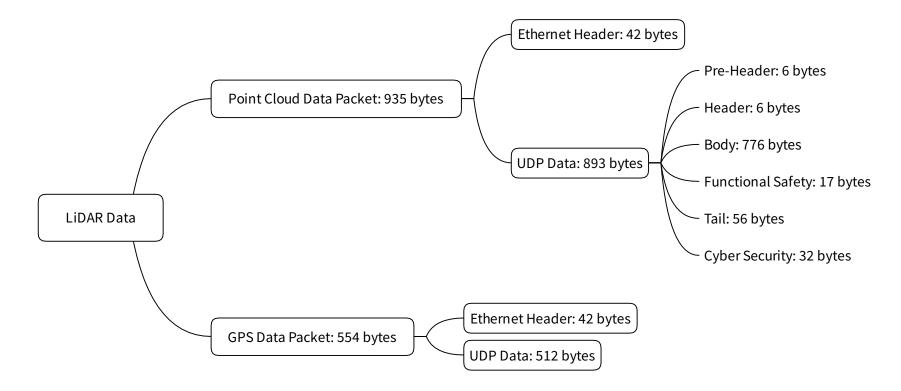
Before operating the LiDAR, strip away the protective cover outside the enclosure.

The LiDAR does not have a power switch. It starts operating once connected to power and the Ethernet.

To receive data on your PC, set the PC's IP address to 192.168.1.100 and subnet mask to 255.255.255.0

For Ubuntu:	For Windows:
Input this ifconfig command in the terminal:	Open the Network Sharing Center, click on "Ethernet"
~\$ sudo ifconfig enp0s20f0u2 192.168.1.100	In the "Ethernet Status" box, click on "Properties"
(replace enp0s20f0u2 with the local Ethernet port name)	Double-click on "Internet Protocol Version 4 (TCP/IPv4)"
	Configure the IP address to 192.168.1.100 and subnet mask to 255.255.255.0

To record and display point cloud data, see Chapter 5 (PandarView)


To set parameters, check device info, or upgrade firmware/software, see Chapter 4 (Web Control)

The SDKs (Software Development Kits) are published on Hesai's official GitHub page. Please find the download links at: www.hesaitech.com/en/download (Product Documentation → select product model)

3 Data Structure

The LiDAR outputs Point Cloud Data Packets and GPS Data Packets using 1000 Mbps Ethernet UDP/IP.

All the multi-byte values are unsigned and in little endian format.

3.1 Point Cloud Data Packet

3.1.1 Ethernet Header

Each LiDAR has a unique MAC address. The source IP is 192.168.1.201 by default, and the destination IP is 255.255.255 (broadcast).

Point Cloud Ethernet Header: 42 bytes				
Field	Bytes	Description		
Ethernet II MAC	12	Destination: broadcast (0xFF: 0xFF: 0xFF: 0xFF: 0xFF)		
		Source: (xx:xx:xx:xx:xx)		
Ethernet Data Packet Type	2	0x08, 0x00		
Internet Protocol	20	Shown in the figure below		
UDP Port Number	4	UDP source port (0x2710, representing 10000) Destination port (0x0940, representing 2368)		
UDP Length	2	2 0x0385, representing 901 bytes (8 bytes more than the size of the Point Cloud UDP Data, shown in		
		Figure 3.1)		
UDP Checksum	2	-		

Internet Protocol, Src: 192.168.1.201 (192.168.1.201), Dst: 255.255.255.255 (255.255.255.255)
 Version: 4
 Header length: 20 bytes
 B Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 Total Length: 840
 Identification: 0x569b (22171)
 B Flags: 0x02 (Don't Fragment)
 Fragment offset: 0
 Time to live: 128
 Protocol: UDP (17)
 B Header checksum: 0xde98 [correct]
 Source: 192.168.1.201 (192.168.1.201)
 Destination: 255.255.255.255.255.255.255

Figure 3.2 Point Cloud Ethernet Header - Internet Protocol

3.1.2 UDP Data

Pre-Header

Pre-Header: 6 bytes			
Field	Bytes	Description	
0xEE	1	SOP (start of packet)	
0xFF	1	SOP (start of packet)	
Protocol Version Major	1	To distinguish between product models	
		0x01 for Pandar128	
Protocol Version Minor	1	For each product model, to indicate the current protocol version	
		Currently 0x04 for Pandar128	
Reserved	2	-	

Header

Header: 6 bytes					
Field	Bytes	Description			
Laser Num	1	0x80 (128 channels)			
Block Num	1	0x02 (2 blocks per packet)			
First Block Return	turn 1 The first block in this data packet				
		0x00 - Single Return			
		0x01 - Return 1 in a Dual Return mode, i.e	., Last Return in 0x39 or 0	x3B mode, or First Return in 0x3C mode	
Dis Unit	1	0x04 (4 mm)			
Return Num	1	Number of returns that each channel gen	erates		
		0x01 - one return 0x02 - two returns	5		
Flags	1	[7:5] is reserved			
		[4:0] shows whether this data packet con	tains the following inform	nation	
		[4] confidence	1 - YES	0 - NO	
		[3] digital signature	1 - YES	0 - NO	
		[2] functional safety	1 - YES	0 - NO	
		[1] IMU	1 - YES	0 - NO	
		[0] UDP sequence	1 - YES	0 - NO	

Body

Body: 776 bytes (2 blocks)			
Field	Bytes	Description	
Azimuth 1	2	For Block 1: current reference angle of the rotor, in little endian format (lower byte first)	
		azimuth angle = Azimuth / 100°	
Block 1	384	For Block 1: measurements made by Channels 1 to 128, see table below	
Azimuth 2	2	For Block 2	
Block 2	384	For Block 2	
CRC 1	4	CRC-32 checksum of the Body	

Each Block in the Body: 3 * 128 = 384 bytes				
Field	Bytes	Description		
Channel XX	3	2-byte Distance In little endian format (lower byte first)		
		Distance Value = Distance * 4 mm		
		1-byte Reflectivity	Reflectivity, in percentage (0 to 255%)	

Pandar128 supports three single-return modes and three dual-return modes, see the Return Mode field in the Tail of Point Cloud UDP Data. In a dual-return mode,

• the measurements from each round of firing are stored in the two blocks of one packet (see table below);

• Azimuth 1 and Azimuth 2 are the same.

Return Mode field	Block 1	Block 2	Note
0x39	Last return	Strongest return	If the last return is also the strongest, then Block 2 stores the second strongest return.
0x3B	Last return	First return	If there is only one return, then Block 1 and Block 2 store the same data.
0x3C	First return	Strongest return	If the first return is also the strongest, then Block 2 stores the second strongest return.

■ Functional Safety

Functional Safety: 17 bytes		
Field	Bytes	Description
FS Version	1	Version number of the functional safety module (currently 0x00)
Lidar State	1	[7:5] is the LiDAR's current state, see table below
Fault Code Type		[4:3] is the type of the fault code in this data packet
		b-01: current fault b-10: past fault
Rolling Counter		[2:0] indicates whether the fault reporting system gets stuck
		Starting from 0, the rolling counter increments by 1 every time the fault message is updated
		Normally, the fault message is updated every 5 ms
Total Fault Code Num	1	[7:4] counts the total number of fault codes in this queue
Fault Code ID		[3:0] is the sequence number of the fault code in this queue, starting from 1
Fault Code	2	Fault code sent by this data packet
Reserved	8	-
CRC 2	4	CRC-32 checksum of Functional Safety (from the Lidar State field to the Fault Code field)

Lidar State field	LiDAR State	Definition
d-0 (b-000)	Init	Initiating the system. Configuration in progress.
d-1 (b-001)	Normal	In operation. No fault detected.
d-2 (b-010)	Report Failure	Non-safety-related fault(s) detected. Record the fault code(s).
d-3 (b-011)	Pre-Performance Degradation	Warning state: safety-related fault(s) detected; will transition to Performance
		Degradation.
d-4 (b-100)	Performance Degradation	Safety-related fault(s) detected. Operating below normal performance.
d-5 (b-101)	Pre-Shutdown	Warning state: significant fault(s) detected; will transition to Shutdown.
d-6 (b-110)	Shutdown	Significant fault(s) detected. Laser emission, motor rotation, and point cloud data
		output have stopped; communication remains.

Tail

Tail: 24 bytes		
Field	Bytes	Description
Reserved	9	-
Azimuth Flag	2	Azimuth flag is used to determine the laser firing time of a channel, see Appendix II.
		[15:14] is the azimuth flag of Block 1, and [13:12] the azimuth flag of Block 2.
		Range: 0~3 (High Performance mode), 0~1 (Standard mode, Energy Saving mode)
		[11:0] is reserved
Operational State	1	0 - High Performance (i.e. High Resolution)
		1 - Shutdown
		2 - Standard
		3 - Energy Saving (measurement range reduced)
Return Mode	1	0x33 - First Return
		0x37 - Strongest Return
		0x38 - Last Return
		0x39 - Dual Return (Last, Strongest)
		0x3B - Dual Return (Last, First)
		0x3C - Dual Return (First, Strongest)
Motor Speed	2	speed_2_bytes [15:0] = speed (RPM)
Date & Time	6	Year (current year minus 1900), month, date, hour, minute, second
		Binary, 1 byte each
Timestamp	4	The "µs time" part of the absolute time of this data packet (defined in Appendix II)
		Unit: μs
		Range: 0 to 1000000 μs (1 s)

(Continued on the next page)

(Continued)

Field	Bytes	Description
Factory Information	1	0x42
UDP Sequence	4	Sequence number of this UDP packet
		1 to 0xFF FF FF FF in little endian format
IMU Temperature	2	Temperature provided by the IMU (inertial measurement unit), as a signed integer
		Unit: 0.01°C
IMU Acceleration Unit	2	Conversion factor of acceleration, as an unsigned integer
		Currently 488 (0x01e8)
		Unit of acceleration: 0.001 <i>mg</i> * 488 = 0.488 <i>mg</i> (<i>g</i> : standard gravity)
IMU Angular Velocity	2	Conversion factor of angular velocity, as an unsigned integer
Unit		Currently 14000 (0x36b0)
		Unit of angular velocity: 0.01 mdps * 14000 = 140 mdps (millidegree per second)
IMU Timestamp	4	Timestamp of the IMU data
		Counting from 0 after powering on the LiDAR or after an overflow
		Unit: 25 µs
		Range: 0 to approx. 1.24 days
IMU X Axis Acceleration	2	Acceleration of the X-axis, measured by the IMU as a signed integer
		Measurement range: ±16g
		Unit of acceleration: currently 0.488 mg, see the IMU Acceleration Unit field
		E.g. When IMU_X_Axis_Acceleration_2_bytes = 5,
		X-axis acceleration = 5 * 0.488 mg = 2.44 mg
IMU Y Axis Acceleration	2	Acceleration of the Y-axis

(Continued on the next page)

(Continued)

Field	Bytes	Description
IMU Z Axis Acceleration	2	Acceleration of the Z-axis
IMU X Axis Angular	2	Angular velocity of the X-axis, measured by the IMU as a signed integer
Velocity		Measurement range: ±4000 dps
		Unit of angular velocity: currently 140 mdps, see the IMU Angular Velocity Unit field
		E.g. When IMU_X_Axis_Angular_Velocity_2_bytes = 5,
		X-axis angular velocity = 5 * 140 mdps = 700 mdps
IMU Y Axis Angular	2	Angular velocity of the Y-axis
Velocity		
IMU Z Axis Angular	2	Angular velocity of the Y-axis
Velocity		
CRC 3	4	CRC-32 checksum of the Tail

Cyber Security

Cyber Security: 32 bytes		
Field	Bytes	Description
Signature	32	Signature calculated using the whole Point Cloud Data Packet
		Algorithm: HMAC-SHA256

3.1.3 Point Cloud Data Analysis

The analysis of point cloud UDP data consists of three steps.

Analyze the vertical angle, horizontal angle, and distance of a data point

Take Pandar128's Channel 5 in Block 2 as an example:

- 1) Vertical angle of Channel 5 is 12.165°, according to Appendix I (Channel Distribution)
- 0° represents the horizontal direction
- Define upward as positive
- Channel # from the uppermost counts from 1

NOTE The accurate vertical angle is recorded in this LiDAR's unit's calibration file, see Section 1.3 (Channel Distribution).

- 2) Horizontal angle = current reference angle of the rotor + horizontal angle offset + firing time offset
- Current reference angle of the rotor is the Azimuth field of Block 2
- Horizontal angle offset: 1.093° for Channel 5, according to Appendix I (Channel Distribution)
- Firing time offset = Laser Firing Time of Channel 5 (See Appendix II) * Spin Rate of the Motor (see Section 4.1 Web Control Home)
- Define clockwise in the top view as positive

NOTE The accurate horizontal angle offset is recorded in this LiDAR's unit's calibration file, see Section 1.3 (Channel Distribution).

3) Actual distance in real world millimeters = distance measurement * Distance Unit (4 mm) Distance measurement is the Distance field of Channel 5 in Block 2

(Continued on the next page)

(Continued)

- Draw the data point in a polar or rectangular coordinate system
- Obtain the real-time point cloud data by analyzing and drawing every data point in each frame

3.2 GPS Data Packet

GPS Data Packets are triggered every second. All the multi-byte values are unsigned and in little endian format.

Before NMEA messages are available from the external GPS module

Each rising edge of the LiDAR's internal 1 Hz signal triggers a GPS Data Packet.

The time and date in the GPS Data Packets are unreal, starting from 00 01 01 00 00 00 (year, month, day, hour, minute, second) and increasing with the internal 1 Hz signal.

Once the LiDAR receives the PPS (pulse-per-second) signal and NMEA messages

The internal 1 Hz signal will be locked to the PPS. Each rising edge still triggers a GPS Data Packet. Meanwhile, the LiDAR will extract the actual date and time from NMEA messages (\$GPRMC or \$GPGGA), and stamp them into both Point Cloud Data Packets and GPS Data Packets.

- Point Cloud Data Packets: 6-byte Date & Time (year, month, day, hour, minute, second)
- GPS Data Packets: 6-byte Date (year, month, day) and 6-byte Time (second, minute, hour)

The GPS module sends first the PPS signal and then the NMEA message. At the rising edge of the PPS pulse, the corresponding NMEA message is not yet available. Therefore, the LiDAR extracts date and time from the previous NMEA message and automatically adds 1 full second.

When GPS signal is lost

The LiDAR will still trigger GPS Data Packets by the rising edge of the internal 1 Hz signal. However, the GPS time in the packets will be counted by the internal 1 Hz signal and will drift from the actual GPS time.

3.2.1 Ethernet Header

The source IP is 192.168.1.201 by default. The destination IP address is 255.255.255.255 and in broadcast form.

GPS Ethernet Header: 42 bytes		
Field	Bytes	Description
Ethernet II MAC	12	Destination: broadcast (0xFF: 0xFF: 0xFF: 0xFF: 0xFF)
		Source: (xx:xx:xx:xx:xx)
Ethernet Data Packet Type	2	0x08, 0x00
Internet Protocol	20	Shown in the figure below
UDP Port Number	4	UDP source port (0x2710, represents 10000)
		Destination port (0x277E, represents 10110)
UDP Length	2	0x208, representing 520 bytes (8 bytes more than the size of the GPS UDP Data, shown in Figure 3.1)
UDP Checksum	2	-

Internet Protocol, Src: 192.168.1.201 (192.168.1.201), Dst: 255.255.255.255 (255.255.255.255)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 Total Length: 540
 Identification: 0x1841 (6209)
 Flags: 0x02 (Don't Fragment)
 Fragment offset: 0
 Time to live: 64
 Protocol: UDP (17)
 Header checksum: 0x5elf [correct]
 Source: 192.168.1.201 (192.168.1.201)
 Destination: 255.255.255 (255.255.255.255)

Figure 3.3 GPS Ethernet Header - Internet Protocol

3.2.2 UDP Data

GPS UDP data: 512 byt	es										
Field	Bytes	Description	Description								
GPS Time Data	18	Header	2 bytes	0xFFEE, 0xFF first							
		Date	6 bytes	Year, month, and d	lay (2 bytes each, lower byte first) in ASCII						
		Time	6 bytes	Second, minute, a	nd hour (2 bytes each, lower byte first) in ASCII						
		μs Time	4 bytes	In units of μs (low	er byte first)						
GPRMC/GPGGA Data	84	NMEA sente	ence that cor	ntains date and time							
		ASCII code, valid till 2 bytes after the asterisk (*)									
		The LiDAR o	The LiDAR can receive either GPRMC or GPGGA, see Section 4.2 (Web Control - Settings)								
Reserved	404	404 bytes o	f 0xDF								
GPS Positioning	1	ASCII code,	obtained fro	6A							
Status											
		When \$GP	RMC is select	ted:	When \$GPGGA is selected:						
		A (hex = 41) for Valid Po	osition	0 = invalid						
		V (hex = 56	i) for Invalid	Position	1 = GPS fix (SPS)						
		NUL (hex =	= 0) for GPS b	eing unlocked	2 = DGPS fix						
					3 = PPS fix						
					6 = estimated (dead reckoning)						
PPS Lock Flag	1	1 - locked	0 - u	nlocked							
Reserved	4	-									

GPRMC Data Format

\$GPRMC, <01>, <02>, <03>, <04>, <05>, <06>, <07>, <08>, <09>, <10>, <11>, <12>*hh

Field #	Field	Description
<01> UTC Time Hour, minute, and second		Hour, minute, and second
		Typically in hhmmss (hour, minute, second) format
<02>	Location Status	A (hex = 41) for Valid Position
		V (hex = 56) for Invalid Position
		NUL (hex = 0) for GPS being unlocked
•••		
<09>	UTC Date	Date information
		Typically in ddmmyy (day, month, year) format

The LiDAR's GPS data interface is compatible with a variety of GPRMC formats, as long as:

<01> is the hour, minute, and second information <09> is the date information.

For example, the following two formats are both acceptable:

\$GPRMC,072242,A,3027.3680,N,11423.6975,E,000.0,316.7,160617,004.1,W*67 \$GPRMC,065829.00,A,3121.86377,N,12114.68322,E,0.027,,160617,,,A*74

GPGGA Data Format

\$GPGGA, <01>, <02>, <03>, <04>, <05>, <06>, <07>, <08>, <09>, <10>, <11>, <12>*hh

Field #	Field	Description
<01>	UTC Time	Hour, minute, and second
		Typically in hhmmss (hour, minute, second) format
<06>	GPS Fix Quality	0 = invalid
		1 = GPS fix (SPS)
		2 = DGPS fix
		3 = PPS fix
		6 = estimated (dead reckoning)

The LiDAR's GPS data interface is compatible with a variety of GPGGA formats, as long as:

<01> is the hour, minute, and second information

For example, the following two formats are both acceptable:

\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 \$GPGGA,134658.00,5106.9792,N,11402.3003,W,2,09,1.0,1048.47,M,-6.27,M,08,AAAA*60

3.2.3 GPS Data Analysis

> Dat	> Data (512 bytes)																
0000	04	d4	c4	eb	9b	37	ec	9f	0d	00	48	cb	08	00	45	00	····· 7·· ·· H···· E·
0010	02	1c	с4	23	40	00	80	11	b0	66	с0	a8	01	с9	c 0	a8	···#@··· ·f·····
0020	01	2d	27	10	27	7e	02	08	00	00	ff	ee	30	32	34	30	·-'·'~···0240
0030	37	30	38	35	37	30	34	30	00	00	00	00	24	47	50	52	70857040 · · · · \$GPR
0040	4d	43	00	2c	30	34	30	37	35	37	2e	37	36	2c	56	2c	MC∙,0407 57.76,V,
0050	2c	2c	2c	2c	2c	2c	30	37	30	34	32	30	2c	2c	2c	4e	,,,,,,07 0420,,,N
0060	2c	56	2a	30	36	36	36	36	36	36	36	36	36	36	36	36	,V*06666 66666666
					г: "			202	Data	Dee	المع		ם חר	to	/ Г		

Figure 3.4 GPS Data Packet - UDP Data (Example)

Field	Data (ASCII Code)	Characters	Meaning
Year	0x30 0x32	'0', '2'	20
Month	0x34 0x30	'4', '0'	04
Day	0x37 0x30	'7', '0'	07

Time

Field	Data (ASCII Code)	Characters	Meaning
Second	0x38 0x35	'8', '5'	58
Minute	0x37 0x30	'7', '0'	07
Hour	0x34 0x30	'4', '0'	04

µs Time

4 bytes, in units of μ s, using the same clock source as the GPS Timestamp in Point Cloud Data Packets Reset to 0 at the rising edge of each PPS signal

4 Web Control

Web control is used for setting parameters, checking device info, and upgrading.

To access web control

- 1) Connect the LiDAR to your PC using an Ethernet cable
- 2) Set the IP address according to Section 2.4 (Get Ready to Use)
- 3) Enter this URL into your web browser: 192.168.1.201/index.html

NOTE Google Chrome or Firefox is recommended.

4.1 Home

 $\left(\Rightarrow \right)$

Home Settings Azimuth FOV High Resolution Operation Statistics Monitor Up

Status

Spin Rate	600 rpm
GPS	Unlock
NMEA (GPRMC/GPGGA)	Unlock
РТР	Free Run

Device Info	Device Log
Model	P128
S/N	P12830C1589930C151
MAC Address	EC:9F:0D:00:4B:5C
Hardware Version	1.0.0
Software Version	1.42.7T1
Sensor Firmware Version	PandarN1.42.013
Controller Firmware Version	1.4.57T1

Copyright©2013-2019 Hesai Photonics Technology Co.,Ltd Support: support@hesaitech.com

Spin Rate of the motor (revs per minute) = frame rate (Hz) * 60

GPS (PPS) Status

ĺ	Lock	LiDAR's internal clock is in sync with GPS
	Unlock	Not in sync

NMEA (GPRMC/GPGGA) Status

Lock	After receiving a valid NMEA message
Unlock	Not receiving a valid NMEA message

PTP Status

Free Run	No PTP master selected
Tracking	Slave is trying to sync with the selected PTP Master,
Tracking	but the absolute offset is over 1 μs
Locked	Absolute offset between Slave and Master is < 1 μ s
	LiDAR has lost connection to the PTP master and is
Гиотор	attempting to recover it.
Frozen	Meanwhile, LiDAR starts drifting from the previous
(Holdover)	clock; when drifting out of specifications, it goes
	back to the Free Run mode.
	back to the Free Run mode.

Device Log

Click to download a .JSON file containing the LiDAR's status, device info, all configurable parameters, and upgrade log.

4.2 Settings

HESAI	Home Settings Azin	nuth FOV High Resc	olution Operation Sta	atistics Monitor	Upgrade
				Reset	All Settings
	Control IP				
	IPv4 Address		192.168.1.201		
	IPv4 Mask		255.255.255.0		
	IPv4 Gateway		192.168.1.1		
	VLAN		1		
	Settings				
	Destination IP		255.255.255.255		
	LiDAR Destination	Port	2368		
	Spin Rate		600 🗸	rpm	
	Return Mode		Last and Sti 🗸	·	

(Continued on the next page)

1. Reset All Settings

By clicking the "Reset All Settings" button on the top-right corner, all configurable parameters in the Settings page and the Azimuth FOV page will be reset to factory defaults. The default values are shown in the screenshots in Section 4.2 and Section 4.3.1.

2. Control IP

VLAN Tagging can be used when the receiving host also supports VLAN function.

- Check the VLAN checkbox and input a VLAN ID (1~4094)
- Set the VLAN ID of the receiving host to be the same

3. Destination IP

Mode	Destination IP
Broadcast (default)	255.255.255.255
Multicast	239.0.0.0~239.255.255.255
Unicast	Same as the PC's IP address

4. LiDAR Functions

Spin Rate	600 rpm / 1200 rpm
Return Mode	Single Return (Last/Strongest/First),
	Dual Return (Last and Strongest, Last
	and First, First and Strongest)

(Continued)

Sync Angle	0	
Trigger Method	Angle Ba	sed 🝷
Clock Source	GPS	·
GPS Mode	GPRM	C •
GPS Destination Port	1011	0
Noise Filtering	OFF	·
Interstitial Points Filtering	OFF	•
Reflectivity Mapping	Linear Maj	oping 🗸
Rotation Direction	Clockwi	ise 🗸
Operational Mode	O Dynamic	○ Constant
	In Operation	○ Standby

(Continued on the next page)

(Continued)

0~360 degrees
By default, the LiDAR's 0° position (see
Section 1.2) is not in sync with GPS PPS or
the whole second of the PTP clock.
If syncing is needed, check the checkbox
and input a sync angle.
Angle-Based / Time-Based
Angle-based: lasers fire every 0.2° at 10
Hz or 0.4° at 20 Hz.
Time-based: lasers fire every 55.56 us.
Noise points mitigation in rain and fog
Interstitial point: when a beam partially
hits on a front target's edge and further
hits on a rear target, the return signal can
result in a false point located between
both targets. Such points can be
mitigated.
Linear / Nonlinear Mapping
Linear: 1-byte reflectivity data linearly
represents target reflectivity (0 ~ 255%).
Nonlinear: increases the contrast in low-
reflectivity region, see Appendix IV.
Clockwise / Counterclockwise
,

(Continued)

Trigger Method	Angle Based
Clock Source	GPS
GPS Mode	GPRMC
GPS Destination Port	10110
Noise Filtering	OFF
Interstitial Points Filtering	OFF
Reflectivity Mapping	Linear Mapping
Rotation Direction	Clockwise
Operational Mode	O Dynamic O Const
Standby Mode	• In Operation • Stand

(Continued)

	Dynamic / Constant
	Dynamic: automatic shifting between four
	states according to ambient temperature -
Operational	High Performance, Standard, Energy
Mode	Saving, and Shutdown. See the table
	below.
	Constant: shifting only between High
	Performance and Shutdown.
Standby Mode	Motor not running and lasers not firing

Definition of operational states:

Operational States	Horizontal Resolution	Laser Power
High Performance	High Resolution Mode	Normal
Standard	Standard Mode	Normal
Energy Saving	Standard Mode	Half of normal value (measurement range reduced by 30%)
Shutdown	Motor not running and lasers not firing	Shutdown

5. Clock Source and PTP Parameters

Clock Source	GPS / PTP
	In PTP mode, LiDARs do not output GPS Data
	Packets (see Appendix III PTP Protocol)

Clock Source	GPS	•
GPS Mode	GPRMC	•
GPS Destination Port	10110	

Clock Source	PTP	•
Profile	1588v2	•
PTP Network Transport	UDP/IP	•
PTP Domain Number[0-127]	0	
PTP logAnnounceInterval	1	
PTP logSyncInterval	1	
PTP logMinDelayReqInterval	0	

• When GPS is selected as the clock source:

GPS Mode	GPRMC / GPGGA
	Format of NMEA data received from the
	external GPS module, see Section 3.2.2
GPS Destination	10110 (default)
Port	Port used for sending GPS Data packets

• When PTP is selected as the clock source:

Profile	1588v2 (default) / 802.1AS
	IEEE timing and synchronization standard
PTP Network	UDP/IP (default) or L2
Transport	1588v2: users can select UDP/IP or L2
	802.1AS: only supports L2 network
PTP Domain	Integer from 0 to 127
Number	Domain attribute of the local clock

• When using the 1588v2 profile:

PTP	-2 to 3 log seconds			
logAnnounceIn-	Time interval between Announce			
terval	messages (default: 1)			
PTP	-7 to 3 log seconds			
logSyncInterval	Time interval between Sync messages			
	(default: 1)			
PTP	-7 to 3 log seconds			
logMinDelayReq-	Minimum permitted mean time between			
Interval	Delay_Req messages (default: 0)			

4.3 Azimuth FOV

To set the Azimuth FOV, users can select one of the two modes: for all channels, or multi-section FOV.

4.3.1 For all channels

A continuous angle range, specified by a Start Angle and an End Angle, will be applied to all channels. The LiDAR outputs valid data only within the specified range.

Azimuth FOV Setting		For all channels
Azimuth FOV for All	Start:	0.0
Channels	End:	360.0

4.3.2 Multi-section FOV

Users can configure up to five continuous angle ranges for all channels. Each channel outputs valid data only within its specified range.

Multi-section FOV	Start Angle	End Angle
Azimuth FOV 1	0.0	0.0
Azimuth FOV 2	0.0	0.0
Azimuth FOV 3	0.0	0.0
Azimuth FOV 4	0.0	0.0
Azimuth FOV 5	0.0	0.0

4.3.3 Note

- Click "Save" to apply your settings.
- The angles in degrees are accurate to the first decimal place.
- If the Start Angle is larger than the End Angle, then the actual azimuth FOV is the union of [Start Angle, 360°] and [0°, End Angle].

For instance, when the angle range is set to be $[270^\circ, 90^\circ]$, the actual azimuth FOV is $[270^\circ, 360^\circ] \cup [0^\circ, 90^\circ]$.

4.4 High Resolution

The horizontal resolution of far field measurement is configurable on-the-fly.

Configuration Mode	Frame Rate	Horizontal Resolution of Far Field Measurement		
Standard	10 Hz	0.2° for all channels		
	20 Hz	0.4° for all channels		
High Resolution	10 Hz	0.1° for the 64 high-res channels (Channel 26 to Channel 89)		
		0.2° for the other channels		
		NOTE Channel # counts from 1 to 128		
	20 Hz	0.2° for the 64 high-res channels (Channel 26 to Channel 89)		
		0.4° for the other channels		

HESAI	Home Settings	Azimuth FOV	High Resolution	Operation Statistics	Monitor	Upgrade
Mode				High Resolution	•	
		Sa	ve			
	Horizontal Resolution	At	10 Hz	At 20 Hz		
	Standard Mode	0.2	2	0.4°		
	High Resolution Mode	0.1	0	0.2°		

NOTE The horizontal resolution of near field measurement is always 0.4° at 10 Hz and 0.8° at 20 Hz. See Appendix I (Channel Distribution) for the definition of near/far field measurement.

4.5 Operation Statistics

HESAI	Home	Settings	Azimuth FOV	High Resolution	Operation Statistics	Monitor	Upgrade
	Start-	up Counts		372			
	Interr	al Tempera	ature	34.40°C			
	Interr	al Humidi	ty	23.3%RH			
	Total	Operation	Time	283 h 32 min			
	Inte	rnal Ten	perature	Operation	Time		
	< -40	°C		187 h 35 min			
	-40 ~	-20 °C		0 h 0 min			
	-20 ~	0 °C		0 h 0 min			
				•			
	100 ~	- 120 °C		0 h 0 min			
	>120	°C		0 h 0 min			

The LiDAR's operation time in aggregate and in different temperature ranges are listed, as well as the internal temperature and humidity.

4.6 Monitor

The LiDAR's input current, voltage, and power consumption are displayed.

HESAI	Home	Settings	Azimuth FOV	High Resolution	Operation Statistics	Monitor	Upgrade
	Item				Value		
	LiDAR Input	Current			1707.90 mA		
	LiDAR Input	Voltage			11.43 V		
	LiDAR Input	Power			19.52 W		

Copyright@2013-2019 Hesai Photonics Technology Co.,Ltd Support: support@hesaitech.com

4.7 Upgrade

Click the "Upload" button, select an upgrade file (provided by Hesai), and confirm your choice in the pop-up window. When the upgrade is complete, the LiDAR will automatically reboot, and the past versions will be logged in the Upgrade Log.

HESAI	Home Settings Azimuth FOV Pandar Upgrade Informa Addression Hardware Version Addression Software Version Addression Firmware of Sensor Version Addression Firmware of Controller Version Addression	1.0.0 1.42.7T1 PandarN1.42.01 1.4.57T1	Operation Statistics	Monitor	A software reboot is triggered by clicking the "Restart" button on the top right corner. Afterwards, the start- up counts in the Operation Statistics page increments by 1.	
	Upgrade Log Number: 1 Software Version: 1.4.8T1 Firmware of Sensor Version Firmware of Controller Version Number: 2					

NOTE The screenshot may not display the most current version numbers.

5 PandarView

PandarView is a software that records and displays point cloud data from Hesai LiDARs, available in 64-bit Windows 10 and Ubuntu-16.04/18.04.

5.1 Installation

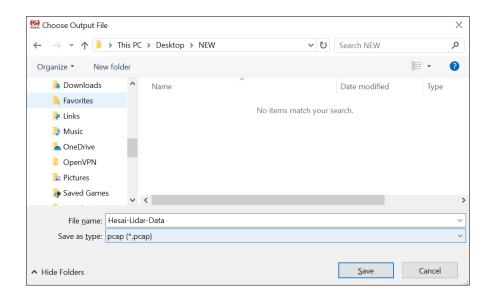
Copy the installation files from the USB disk in the LiDAR's protective case, or download these files from Hesai's official website: www.hesaitech.com/en/download

System	Installation Files	Installation Steps
Windows	PandarViewX64_Release_V1.7.22.msi	Before upgrading PandarView to a newer version, please uninstall the current version
WITCOWS	Pandarviewx04_Release_v1.7.22.1151	
		Double click and install PandarView_Windows using the default settings
Ubuntu-16.04	PandarViewX64_Release_V1.7.22.tar.gz	Unzin the file and run Dander View, Installer hin
Ubuntu-18.04	PandarViewX64_18.04_Release_V1.7.22.tar.gz	Unzip the file and run PandarView_Installer.bin

This manual describes PandarView 1.7.22. The menu bar and buttons are shown below.

NOTE Users may check the software version from "About" in the menu bar.

5.2 Use


Set the PC's IP address according to Section 2.4 (Get Ready to Use)

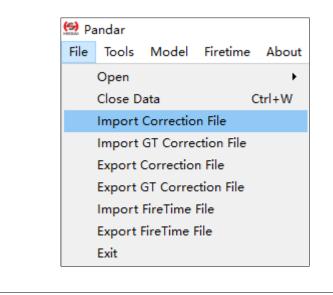
Check Live Data

Click on 4 and select your LiDAR model to begin receiving data over Ethernet.

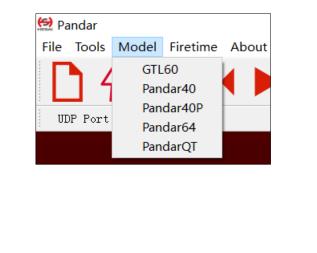
Record Point Cloud Data

Click on \bigcirc to pop up the "Choose Output File" window. Specify the file directory and click on "Save" to begin recording a .PCAP file. Click on \bigcirc again to stop recording.

Play Point Cloud Data


1) Open a .PCAP File

Click on 🗋 to pop up the "Choose Open File" window. Select a .PCAP file to open.


2) Import a Correction File

Each LiDAR unit has a corresponding calibration file (.CSV), see Section 1.3 (Channel Distribution).

We recommend importing the calibration file of this LiDAR unit into PandarView (File -- Import Correction File), in order to display the point cloud most accurately.

If the calibration file of this LiDAR unit is temporarily not at hand, select the LiDAR model in the "Model" menu. Thus a general calibration file for this model will be loaded to improve point cloud display.

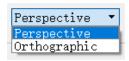
3) Play the .PCAP File

Button	Description							
	Jump to the beginning of the file							
•	While paused, jump to the previous frame While playing, rewind. May click again to adjust the rewind speed (2x, 3x, 1/2x, 1/4x, and 1x)	зx	1/2X	1/4X	•			
	After loading a point cloud file, click to play the file While playing, click to pause							
•	While paused, jump to the next frame. While playing, forward. May click again to adjust the forward speed (2x, 3x, 1/2x, 1/4x, and 1x)	зx	1/2X	1/4X	•			
	Jump to the end of the file							
csv	Save a single frame to .CSV							
	While playing, this Record button will be gray and unclickable	While playing, this Record button will be gray and unclickable						
Ţ	While playing, click to loop playback. Otherwise the player will stop at the er	While playing, click to loop playback. Otherwise the player will stop at the end of the file						
PCAP	Save multiple frames to .PCAP							
Scar State	End Frame: 408 Save multiple frames to .CSV Specify the start and end frames							
20	Drag this progress bar or enter a frame number to jump to a specific frame							

5.3 Features

Standard Viewpoints

Mouse Shortcuts


Up ⊕ Down ⊖ Scroll	Hold scroll	Hold left button	Y Z
Scroll the mouse wheel up/down to zoom in/out	Press the mouse wheel and drag to pan the view	Hold the left button and drag to adjust the point of view	The bottom-left coordinate axes show the current point of view

3D Projection and Distance Measurement

PandarView supports perspective projection (default) and orthographic projection.

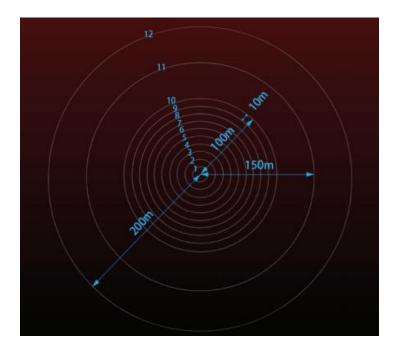
The distance ruler is available only under orthographic projection:

- Click on to enter measurement mode. Hold the Ctrl key and drag the mouse to make a measurement in units of meters
- Click on 🛄 again to quit

Return Mode

- Both blocks (default): to show the point cloud data from all blocks
- Even/Odd Block: to show the point cloud data from even/odd-number blocks **NOTE** See the definition of blocks in Section 3.1.2 (Point Cloud UDP Data)

UDP Port


Enter the UDP port number, and click "Set" to apply it.

Return Mode: Both Blocks V Even Block Odd Block Both Blocks

UDP Port: 2368 Set

Distance Reference Circles

Click on (6) to show/hide the 12 distance reference circles. The actual distances are marked below. To change the color and line width of these circles, click on "Tools" in the menu bar and open "Grid Properties".

■ Fire Time Correction

After opening a .PCAP file, import the fire time correction file of this LiDAR model into PandarView (File -- Import FireTime File).

Afterwards, click on 🔒 to finetune point cloud display using the fire time correction file.

Click on 🔒 again to cancel the finetuning effects.

Channel Selection

Click on 🔋 to open the Channel Selection box.

• Check/Uncheck the boxes on the left to show/hide each channel. By default, the point cloud data from all channels are shown.

• Check/Uncheck the "Enable/Disable all" option at the bottom of the table to show/hide all channels.

• When multiple channels are selected by holding the Shift or Ctrl key, check/uncheck the "Enable/Disable selected" option to show/hide multiple channels.

Click on 🔋 again to close the Channel Selection box.

😫 Pa	andar							
File	Tools	Model	Firetime	About				
(Open			•				
(Close Da	ata	C	Ctrl+W				
1	mport (Correctio	on File					
1	mport (GT Corre	ction File					
1	Export (Correctio	n File					
1	Export (GT Correc	ction File					
Import FireTime File								
I	Export F	ireTime	File					
	Exit							

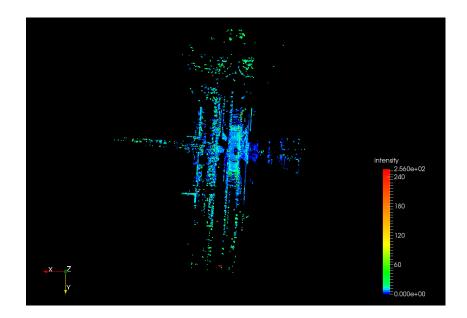
Pandar ×									
	Channel	Elevation	Azimuth	^					
\checkmark	1	14.708	-1.042						
\checkmark	2	10.858	-1.042						
\checkmark	3	7.885	-1.042						
\checkmark	4	4.883	-1.042						
\checkmark	5	2.866	-1.042						
\checkmark	6	1.854	-1.042						
\checkmark	7	1.686	1.042						
\checkmark	8	1.514	3.125	~					
✓ E	nable/Disa	ble all 🗹 Enabl	le/Disable select	ted					

Point Selection and Data Table

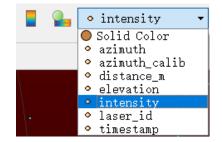
Click on ight and drag the mouse over the point cloud to highlight an area of points.

Click on IIII to view the data of the highlighted points, as shown below.

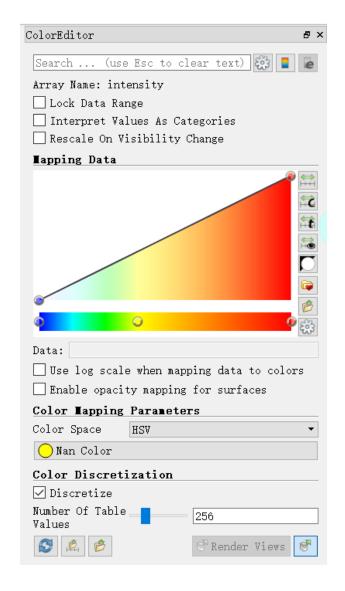
Sho	howing Data 🔻 Attribute: Point Data 🔻 Precision: 3 💭 F 🔣 🌐 🚛 🧭											
	Point ID		Points	azimuth	azimuth_calib	distance_m	elevation	intensity	laser_id	timestamp		
0	44575	55.724	-26.890 10.465	113.040	115.760	62.752	9.600	6	15	168523094		
1	44615	55.724	-26.890 10.465	113.040	115.760	62.752	9.600	6	15	168523094		
2	44655	55.549	-27.045 10.450	113.240	115.960	62.660	9.600	12	15	168523094		
3	44695	55.549	-27.045 10.450	113.240	115.960	62.660	9.600	12	15	168523094		


Some of the data fields are defined below:

Field	Description
points	The XYZ coordinates of each point
azimuth	Rotor's current reference angle
azimuth_calib	Azimuth + horizontal angle offset


To cancel the selection, click on i again and click on any place outside the selected point cloud area.

Color Schemes


Click on **I** to show the color legend at the lower right corner.

The default color scheme is intensity based. Users can choose from other colors schemes based on azimuth, azimuth_calib, distance, elevation, laser_id, or timestamp.

Click on 🎍 to open or close the Color Editor.

6 Communication Protocol

To receive Hesai LiDAR's TCP and HTTP API Protocols, please contact Hesai technical support.

7 Sensor Maintenance

Storage

Store the product in a dry, well ventilated place. The ambient temperature shall be between -40°C and +85°C, and the humidity below 85%. Please check Section 1.4 (Specifications) for product IP rating, and avoid any ingress beyond that rating.

Transport

Package the product in shock-proof materials to avoid damage during transport.

Cleaning

Stains on the product's enclosure, such as dirt, fingerprints, and oil, can negatively affect point cloud data quality. Please perform the following steps to remove the stains.

NOTE

- To avoid damaging the optical coating, DO NOT apply pressure when wiping the enclosure
- Only clean the stained area of the enclosure
- · Check before using a lint-free wipe. If the wipe is stained, use another
- 1) Thoroughly wash your hands or wear a pair of powder-free PVC gloves

2) To remove dust, blow dry air onto the enclosure, or use a piece of lint-free wipe to lightly brush across the dusty area To remove persistent stains, move on to the next step

(Continued on the next page)

(Continued)

3) Spray the enclosure with warm, neutral solvent using a spray bottle

Solvent type	99% isopropyl alcohol (IPA)
	or 99% ethanol (absolute alcohol)
	or distilled water
	NOTE When using IPA or alcohol, please ensure adequate ventilation and keep away from fire.
Solvent temperature	20 to 25°C

4) When the stains have loosened, dip a piece of lint-free wipe into the solvent made in Step 3, and gently wipe the enclosure back and forth along its curved surface

- 5) Should another cleaning agent be applied to remove certain stains, repeat Steps 3 and 4
- 6) Spray the enclosure with clean water, and gently wipe off the remaining liquid with another piece of lint-free wipe

8 Troubleshooting

In case the following procedures cannot solve the problem, please contact Hesai technical support.

Symptoms	Points to Check					
	Verify that					
Indicator light is off on the	 power adapter is properly connected and in good condition 					
Indicator light is off on the connection box	connection box is intact					
connection box	 input voltage and current satisfy the requirements in Section 2.3 (Connection Box) 					
	Power on again to check if the symptom persists.					
	Verify that					
	 power adapter is properly connected and in good condition 					
Motor is not running	 if a connection box is used, the connection box is intact 					
Motor is not running	• input voltage and current satisfy the requirements in Section 1.4 (Specifications) and 2.3 (Connection Box)					
	 web control can be accessed (see "cannot open web control" on the next page) 					
	Power on again to check if the symptom persists.					
	Verify that					
	 Ethernet cable is properly connected (by unplugging and plugging again) 					
Motor is running but no	 LiDAR's IP is in the same subnet with the PC's 					
output data is received,	 horizontal FOV is properly set on the Azimuth FOV page of web control 					
neither on Wireshark nor on	 firmware version of the sensor is correctly shown on the Upgrade page of web control 					
PandarView	• LiDAR is emitting laser light. This can be checked by using an infrared camera, an infrared sensor card, or a					
	phone camera without infrared filter					
	Power on again to check if the symptom persists.					

(Continued on the next page)

(Continued)

Symptoms	Points to Check						
	Verify that						
Can receive data on	Destination IP and the Destination LiDAR Port are correctly set on the Settings page of web control						
Wireshark but not on	 PC's firewall is disabled, or that PandarView is added to the firewall exceptions 						
PandarView	• the latest PandarView version (see the Download page of Hesai's official website) is installed on the PC						
	Power on again to check if the symptom persists.						
	Verify that						
	 Ethernet cable is properly connected (by unplugging and plugging again) 						
	• LiDAR's IP is in the same subnet with the PC's. Users may use WireShark to check the LiDAR's IP that						
Cannot open web control	broadcasts data packets						
	Afterwards,						
	 restart PC, or connect the LiDAR to another PC 						
	 power on again to check if the symptom persists 						
	Verify that						
	 horizontal FOV is properly set on the Azimuth FOV page of web control 						
	 motor's spin rate is steady on the Home page of web control 						
	• LiDAR's internal temperature is between -20°C and 95°C on the Operation Statistics page of web control						
Abnormal packet size	Ethernet is not overloaded						
(missing packets)	• no switch is connected into the network. The data transmitted from other devices may cause network						
	congestion and packet loss						
	Afterwards,						
	 connect the PC only to the LiDAR and check for packet loss 						
	 power on again to check if the symptom persists 						

(Continued on the next page)

(Continued)

Symptoms	Points to Check						
	Verify that						
	• LiDAR's enclosure is clean. If not, refer to Chapter 7 (Sensor Maintenance) for the cleaning method						
	 LiDAR's calibration file is imported, see Section 5.2 (PandarView - Use) 						
	 horizontal FOV is properly set on the Azimuth FOV page of web control 						
	 motor's spin rate is steady on the Home page of web control 						
Abnormal point cloud	• LiDAR's internal temperature is between -20°C and 95°C on the Operation Statistics page of web control						
(obviously misaligned							
points, flashing points, or	Afterwards, check for packet loss						
incomplete FOV)	• If no packet is missing while the point cloud flashes, please update PandarView to the latest version (see the						
	Download page of Hesai's official website) and restart the PC						
	If the point cloud is still abnormal						
	Try connecting the LiDAR to another PC						
	 Power on again to check if the symptom persists 						
	Verify that						
	GPS receiver is properly connected						
	 PPS signal is connected to the LiDAR 						
GPS cannot be locked	Destination GPS Port is correct on the Settings page of web control						
	• input GPS signals satisfy the electrical requirements in Section 2.2 (Interface) and Section 2.3.1 (Connection						
	Box)						
	Power on again to check if the symptom persists						

Appendix I Channel Distribution

Channel	Angular Position		Instrument Range		Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
1	2	3	(4)	(5)	6	7	8	9	10

1	Channel # counts from 1, from the topmost to bottom
23	Design values of each channel's horizontal (azimuth) angle offset and vertical (elevation) angle.
	 The accurate values are recorded in this LiDAR's unit's calibration file
	Refer to Section 3.1.3 (Point Cloud Data Analysis) for the data parsing scheme
45	Actual measurement range, confined by the allocated Time of Flight (ToF) for each channel
6	The 32 channels with ④ = 0.3 m are NF-enabled channels
	• All the 128 channels fire laser pulses that measure the far field (>2.85 m)
	• Additionally, the NF-enabled channels also fire laser pulses that measure only the near field (0.3~2.85 m), at a time other than
	these channels' far field firings
	• The horizontal resolution of NF measurement is always 0.4° at 10 Hz and 0.8° at 20 Hz
7	Probability of Detection (PoD) = 70%
	The values in brackets only indicate detection capability, while the actual measurement range is cut off to ⑤.
	Channels 98~128 have enhanced near- and mid-field detection, since these channels typically point to the ground in the far field.
8	Channels 34~65 are FF-enhanced channels , able to detect 200 m@10%
9	Probability of Detection (PoD) = 70%
10	Channels 26~89 are high-res channels , characterized by
	0.125° vertical resolution
	• enhanced horizontal resolution in High Resolution Mode, see Section 4.4 (Web Control - High Resolution)
	• ⑤ = 200 m

Channel	Angular Po	sition	Instrument Range		Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Max	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
01	3.257°	14.436°	0.3 m	100 m	YES	100 m	-	100 m @ 10%	-
02	3.263°	13.535°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
03	1.091°	13.082°	0.3 m	100 m	YES	100 m	-	100 m @ 10%	-
04	3.268°	12.624°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
05	1.093°	12.165°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
06	3.273°	11.702°	0.3 m	100 m	YES	(120 m)	-	100 m @ 6%	-
07	1.094°	11.239°	2.85 m	100 m	-	(120 m)	-	100 m @ 6%	-
08	3.278°	10.771°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
09	1.095°	10.305°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
10	3.283°	9.830°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
11	1.096°	9.356°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
12	3.288°	8.880°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
13	1.097°	8.401°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
14	3.291°	7.921°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
15	1.098°	7.438°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
16	-1.101°	6.953°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
17	1.100°	6.467°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
18	-1.104°	5.978°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
19	-3.306°	5.487°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
20	-1.106°	4.996°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Po	sition	Instrume	nt Range	Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Max	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
21	-3.311°	4.501°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
22	-1.109°	4.007°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
23	-3.318°	3.509°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
24	-1.111°	3.013°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
25	-3.324°	2.512°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
26	-1.113°	2.013°	0.3 m	200 m	YES	140 m	-	200 m @ 37%	YES
27	7.72°	1.885°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
28	5.535°	1.761°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
29	3.325°	1.637°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
30	-3.33°	1.511°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
31	1.107°	1.386°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
32	-5.538°	1.258°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
33	-7.726°	1.13°	0.3 m	200 m	YES	140 m	-	200 m @ 37%	YES
34	-1.115°	1.008°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
35	7.731°	0.88°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
36	5.543°	0.756°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
37	3.329°	0.63°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
38	-3.336°	0.505°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
39	1.108°	0.379°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
40	-5.547°	0.251°	0.3 m	200 m	YES	200 m	YES	200 m @ 10%	YES

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Position		Instrument Range		Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
41	-7.738°	0.124°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
42	-1.117°	0.000°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
43	7.743°	-0.129°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
44	5.551°	-0.254°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
45	3.335°	-0.380°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
46	-3.342°	-0.506°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
47	1.110°	-0.632°	0.3 m	200 m	YES	200 m	YES	200 m @ 10%	YES
48	-5.555°	-0.760°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
49	-7.750°	-0.887°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
50	-1.119°	-1.012°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
51	7.757°	-1.141°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
52	5.560°	-1.266°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
53	3.340°	-1.393°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
54	-3.347°	-1.519°	0.3 m	200 m	YES	200 m	YES	200 m @ 10%	YES
55	1.111°	-1.646°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
56	-5.564°	-1.773°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
57	-7.762°	-1.901°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
58	-1.121°	-2.027°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
59	7.768°	-2.155°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
60	5.569°	-2.282°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Position		Instrument Range		Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
61	3.345°	-2.409°	0.3 m	200 m	YES	200 m	YES	200 m @ 10%	YES
62	-3.353°	-2.535°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
63	1.113°	-2.663°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
64	-5.573°	-2.789°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
65	-7.775°	-2.916°	2.85 m	200 m	-	200 m	YES	200 m @ 10%	YES
66	-1.123°	-3.044°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
67	7.780°	-3.172°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
68	5.578°	-3.299°	0.3 m	200 m	YES	140 m	-	200 m @ 37%	YES
69	3.351°	-3.425°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
70	-3.358°	-3.552°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
71	1.115°	-3.680°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
72	-5.582°	-3.806°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
73	-7.787°	-3.933°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
74	-1.125°	-4.062°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
75	7.792°	-4.190°	0.3 m	200 m	YES	140 m	-	200 m @ 37%	YES
76	5.586°	-4.318°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
77	3.356°	-4.444°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
78	-3.363°	-4.571°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
79	1.116°	-4.699°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
80	-5.591°	-4.824°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Po	sition	Instrumer	nt Range	Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
81	-7.799°	-4.951°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
82	-1.127°	-5.081°	0.3 m	200 m	YES	140 m	-	200 m @ 37%	YES
83	7.804°	-5.209°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
84	5.595°	-5.336°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
85	3.360°	-5.463°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
86	-3.369°	-5.589°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
87	1.118°	-5.718°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
88	-5.599°	-5.843°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
89	-7.811°	-5.968°	2.85 m	200 m	-	140 m	-	200 m @ 37%	YES
90	-1.129°	-6.100°	0.3 m	100 m	YES	140 m	-	200 m @ 37%	-
91	-3.374°	-6.607°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
92	-1.130°	-7.117°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
93	-3.379°	-7.624°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
94	-1.132°	-8.134°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
95	-3.383°	-8.640°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
96	3.381°	-9.149°	0.3 m	100 m	YES	(140 m)	-	100 m @ 3%	-
97	-3.388°	-9.652°	2.85 m	100 m	-	(140 m)	-	100 m @ 3%	-
98	3.386°	-10.160°	2.85 m	100 m	_	100 m	-	100 m @ 10%	-
99	1.129°	-10.665°	0.3 m	100 m	YES	100 m	-	100 m @ 10%	-
100	3.390°	-11.170°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Po	sition	Instrume	nt Range	Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
101	1.129°	-11.672°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
102	3.395°	-12.174°	0.3 m	100 m	YES	100 m	-	100 m @ 10%	-
103	1.131°	-12.673°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
104	3.401°	-13.173°	2.85 m	100 m	-	100 m	-	100 m @ 10%	-
105	1.133°	-13.67°	0.3 m	100 m	YES	100 m	-	100 m @ 10%	-
106	3.406°	-14.166°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
107	1.135°	-14.66°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
108	3.410°	-15.154°	0.3 m	100 m	YES	50 m	-	100 m @ 120%	-
109	1.137°	-15.645°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
110	3.416°	-16.135°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
111	1.139°	-16.622°	0.3 m	100 m	YES	50 m	-	100 m @ 120%	-
112	-1.142°	-17.106°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
113	1.142°	-17.592°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
114	-1.143°	-18.072°	0.3 m	100 m	YES	50 m	-	100 m @ 120%	-
115	-3.426°	-18.548°	2.85 m	100 m	-	50 m	-	100 m @ 120%	-
116	-3.426°	-19.030°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
117	-1.144°	-19.501°	0.3 m	100 m	YES	25 m	-	100 m @ 1600%	-
118	-3.429°	-19.978°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
119	-1.145°	-20.445°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
120	-3.433°	-20.918°	0.3 m	100 m	YES	25 m	-	100 m @ 1600%	-

Pandar128 Channel Distribution (To Be Continued)

Channel	Angular Po	sition	Instrume	nt Range	Near Field	Max. Range	Far Field	Min. Reflectivity @ Max.	High-
#	Horiz. Offset	Vertical	Min	Мах	Enabled?	@10% Reflectivity	Enhanced?	Instrument Range	Res?
121	-1.145°	-21.379°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
122	-3.436°	-21.848°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
123	-1.146°	-22.304°	0.3 m	100 m	YES	25 m	-	100 m @ 1600%	-
124	-3.440°	-22.768°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
125	-1.146°	-23.219°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
126	-3.443°	-23.678°	0.3 m	100 m	YES	25 m	-	100 m @ 1600%	-
127	-3.446°	-24.123°	2.85 m	100 m	-	25 m	-	100 m @ 1600%	-
128	-3.449°	-25.016°	0.3 m	100 m	YES	25 m	-	100 m @ 1600%	-

Pandar128 Channel Distribution (Continued)

Appendix II Absolute Time and Laser Firing Time

Absolute Time of Point Cloud Data Packets

The Body of each Point Cloud Data Packet contains 2 data blocks, detailed in Section 3.1.2 (Point Cloud UDP Data).

Single Return Mode

The measurements from one round of firing are stored in one block.

The absolute time of a Point Cloud Data Packet is the time when the LiDAR sends a command to trigger a round of firing that will be stored in Block 2.

Dual Return Mode

The measurements from one round of firing are stored in the two blocks of one packet.

The absolute time of a Point Cloud Data Packet is the time when the LiDAR sends a command to trigger a round of firing that will be stored in Blocks 1 & 2.

Calculation

The absolute time of a Point Cloud Data Packet is the sum of date, time (accurate to the second) and µs time.

• Date and Time: can be retrieved either from the current Point Cloud Data Packet (6 bytes of Date & Time), or from the previous GPS Data Packet (6 bytes of Date and 6 bytes of Time).

• µs time: can be retrieved from the current Point Cloud Data Packet (4 bytes of Timestamp)

NOTE When using a PTP clock source, the LiDAR does not output GPS Data Packets.

Start Time of Each Block

Assuming that the absolute time of a Point Cloud Data Packet is t0, the start time of each block (the time when the first firing starts) can be calculated.

Single Return Mode

The start time of each block depends on the horizontal resolution - whether the LiDAR is operating in High Resolution mode or Standard mode (defined in Section 4.4 High Resolution).

Block	Start Time (μs) in High Resolution Mode	Start Time (μs) in Standard Mode
Block 1	t0 + 3.148 - 27.778	t0 + 3.148 - 27.778 * 2
Block 2	t0 + 3.148	t0 + 3.148

Dual Return Mode

The start time of each block is independent of the horizontal resolution.

Block	Start Time (µs)
Block 1 & Block 2	t0 + 3.148

■ Laser Firing Time of Each Channel

Assume that the start time of Block m is T(m), $m \in \{0, 1\}$, then the laser firing time of Channel n in Block m is t(m, n) = T(m) + $\Delta t(n)$, $n \in \{1, 2, ..., 128\}$.

 $\Delta t(n)$ is determined below:

1) Check the Operational State field in the Tail of the Point Cloud Data Packet

Operation states: high performance, standard, energy saving, shutdown

- 2) Check the Azimuth Flag field in the Tail of the Point Cloud Data Packet: obtain azimuth flag of Block m
- Range in High Performance mode: 0, 1, 2, 3
- Range in Standard or Energy Saving mode: 0, 1
- 3) Check the Distance of Channel n in Block m, in the Body the Point Cloud Data Packet
- If Distance > 2.85 m, the data point is generated from a far-field firing
- If Distance≤2.85 m, the data point is generated from a near-field firing
- 4) Look up $\Delta t(n)$ in the tables below

Operation	al State				High Perf	formance				Sta	indard or E	Energy Sav	ing
Angle S	State	()	-	L		2		3	()		L
Firing	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	1	4436	5201	0	0	4436	4436	0	0	4436	5201	4436	4436
	2	0	0	776	776	0	0	776	776	28554	28554	28554	28554
	3	776	1541	0	0	776	776	0	0	776	1541	776	776
	4	2431	2431	0	0	2781	2781	0	0	2431	2431	2781	2781
	5	4436	4436	0	0	4436	4436	0	0	4436	4436	4436	4436
	6	0	0	2781	4026	0	0	2431	2431	30559	31804	30209	30209
	7	6441	6441	0	0	6091	6091	0	0	6441	6441	6091	6091
	8	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	9	0	0	6441	7206	0	0	6091	6091	34219	34984	33869	33869
Channel	10	776	776	0	0	776	776	0	0	776	776	776	776
#	11	2431	2431	0	0	2781	2781	0	0	2431	2431	2781	2781
	12	6441	6441	0	0	6091	7336	0	0	6441	6441	6091	7336
	13	0	0	776	776	0	0	776	776	28554	28554	28554	28554
	14	0	0	6441	6441	0	0	6091	6091	34219	34219	33869	33869
	15	0	0	2781	3546	0	0	2431	2431	30559	31324	30209	30209
	16	0	0	776	776	0	0	776	776	28554	28554	28554	28554
	17	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	18	6441	7206	0	0	6091	6091	0	0	6441	7206	6091	6091
	19	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	20	776	776	0	0	776	776	0	0	776	776	776	776

Δt(n) – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns) Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()]	L		2		3	()		L
Firing 1	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	21	2431	3196	0	0	2781	2781	0	0	2431	3196	2781	2781
	22	0	0	2781	2781	0	0	2431	2431	30559	30559	30209	30209
	23	0	0	6441	6441	0	0	6091	6091	34219	34219	33869	33869
	24	0	0	4786	4786	0	0	4086	4851	32564	32564	31864	32629
	25	4436	4436	0	0	4436	4436	0	0	4436	4436	4436	4436
	26	10381	10381	10731	12126	10381	10381	10031	10031	38509	39904	37809	37809
	27	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
	28	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	29	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
Channel	30	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
#	31	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	32	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	33	12666	12666	13016	13016	12666	14061	12316	12316	12666	12666	12666	14061
	34	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	35	10381	10381	10731	10731	10381	10381	10031	10031	38509	38509	37809	37809
	36	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	37	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	38	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	39	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
	40	14951	27056	15301	15301	14951	14951	14601	14601	43079	27056	42379	42379

Δt(n) – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns) Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()]	L	2	2		3	()	-	L
Firing 1	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	41	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	42	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	43	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	44	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	45	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	46	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	47	10381	10381	10731	27406	10381	10381	10031	10031	38509	55184	37809	37809
	48	10381	10381	10731	10731	10381	10381	10031	10031	38509	38509	37809	37809
	49	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
Channel	50	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
#	51	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	52	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	53	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	54	12666	12666	13016	13016	12666	27056	12316	12316	12666	12666	12666	27056
	55	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	56	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	57	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	58	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	59	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	60	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379

$\Delta t(n)$ – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns)

Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()]	1	2	2		3	()	-	L
Firing 1	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	61	10381	10381	10731	10731	10381	10381	10031	26706	38509	38509	37809	54484
	62	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
	63	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	64	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	65	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	66	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	67	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	68	10381	10381	10731	10731	10381	10381	10031	11426	38509	38509	37809	39204
	69	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
Channel	70	10381	10381	10731	10731	10381	10381	10031	10031	38509	38509	37809	37809
#	71	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	72	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	73	10381	10381	10731	10731	10381	10381	10031	10031	38509	38509	37809	37809
	74	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
	75	21806	23201	22156	22156	21806	21806	21456	21456	21806	23201	21806	21806
	76	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	77	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521
	78	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	79	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	80	19521	19521	19871	19871	19521	19521	19171	19171	19521	19521	19521	19521

$\Delta t(n)$ – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns)

Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()	-	L		2		3	()		1
Firing 1	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	81	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	82	24091	24091	24441	24441	24091	24091	23741	25136	52219	52219	51519	52914
	83	24091	24091	24441	24441	24091	24091	23741	23741	52219	52219	51519	51519
	84	17236	17236	17586	17586	17236	17236	16886	16886	17236	17236	17236	17236
	85	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	86	8096	8096	8446	8446	8096	8096	7746	7746	36224	36224	35524	35524
	87	12666	12666	13016	13016	12666	12666	12316	12316	12666	12666	12666	12666
	88	21806	21806	22156	22156	21806	21806	21456	21456	21806	21806	21806	21806
	89	14951	14951	15301	15301	14951	14951	14601	14601	43079	43079	42379	42379
Channel	90	2431	3676	0	0	2781	2781	0	0	2431	3676	2781	2781
#	91	776	776	0	0	776	776	0	0	776	776	776	776
	92	4436	4436	0	0	4436	4436	0	0	4436	4436	4436	4436
	93	6441	6441	0	0	6091	6856	0	0	6441	6441	6091	6856
	94	0	0	6441	6441	0	0	6091	6091	34219	34219	33869	33869
	95	0	0	2781	2781	0	0	2431	2431	30559	30559	30209	30209
	96	776	776	0	0	776	2021	0	0	776	776	776	2021
	97	0	0	776	776	0	0	776	776	28554	28554	28554	28554
	98	2431	2431	0	0	2781	2781	0	0	2431	2431	2781	2781
	99	2431	2431	0	0	2781	3546	0	0	2431	2431	2781	3546
	100	4436	4436	0	0	4436	4436	0	0	4436	4436	4436	4436

$\Delta t(n)$ – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns)

Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()	-	1		2		3	()	-	1
Firing 1	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	101	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	102	0	0	776	2021	0	0	776	776	28554	29799	28554	28554
	103	0	0	2781	2781	0	0	2431	2431	30559	30559	30209	30209
	104	6441	6441	0	0	6091	6091	0	0	6441	6441	6091	6091
	105	4436	5681	0	0	4436	4436	0	0	4436	5681	4436	4436
	106	0	0	2781	2781	0	0	2431	2431	30559	30559	30209	30209
	107	0	0	776	776	0	0	776	776	28554	28554	28554	28554
	108	0	0	4786	4786	0	0	4086	5331	32564	32564	31864	33109
	109	6441	6441	0	0	6091	6091	0	0	6441	6441	6091	6091
Channel	110	0	0	6441	6441	0	0	6091	6091	34219	34219	33869	33869
#	111	0	0	6441	7686	0	0	6091	6091	34219	35464	33869	33869
	112	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	113	776	776	0	0	776	776	0	0	776	776	776	776
	114	4436	4436	0	0	4436	5201	0	0	4436	4436	4436	5201
	115	0	0	4786	4786	0	0	4086	4086	32564	32564	31864	31864
	116	2431	2431	0	0	2781	2781	0	0	2431	2431	2781	2781
	117	0	0	2781	2781	0	0	2431	3196	30559	30559	30209	30974
	118	0	0	6441	6441	0	0	6091	6091	34219	34219	33869	33869
	119	776	776	0	0	776	776	0	0	776	776	776	776
	120	0	0	776	1541	0	0	776	776	28554	29319	28554	28554

Δt(n) – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns) Sorted by Channel (continued on the next page)

Operation	al State				High Perf	formance				Sta	ndard or E	Energy Sav	ing
Angle S	State	()	-	1	4	2		3	()	-	L
Firing	Гуре	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near	Far	Near
	121	4436	4436	0	0	4436	4436	0	0	4436	4436	4436	4436
	122	6441	6441	0	0	6091	6091	0	0	6441	6441	6091	6091
	123	0	0	6441	6441	0	0	6091	6856	34219	34219	33869	34634
Channel	124	0	0	2781	2781	0	0	2431	2431	30559	30559	30209	30209
#	125	2431	2431	0	0	2781	2781	0	0	2431	2431	2781	2781
	126	776	776	0	0	776	1541	0	0	776	776	776	1541
	127	6441	6441	0	0	6091	6091	0	0	6441	6441	6091	6091
	128	0	0	776	776	0	0	776	1541	28554	28554	28554	29319
Total Fi	rings	96	96	96	96	96	96	96	96	128	128	128	128

Δt(n) – Time Difference between the Channel's Laser Firing Time and the Block's Start Time (Unit: ns) Sorted by Channel (continued)

Appendix III PTP Protocol

The Precision Time Protocol (PTP) is used to synchronize clocks across a computer network. It can achieve sub-microsecond clock accuracy.

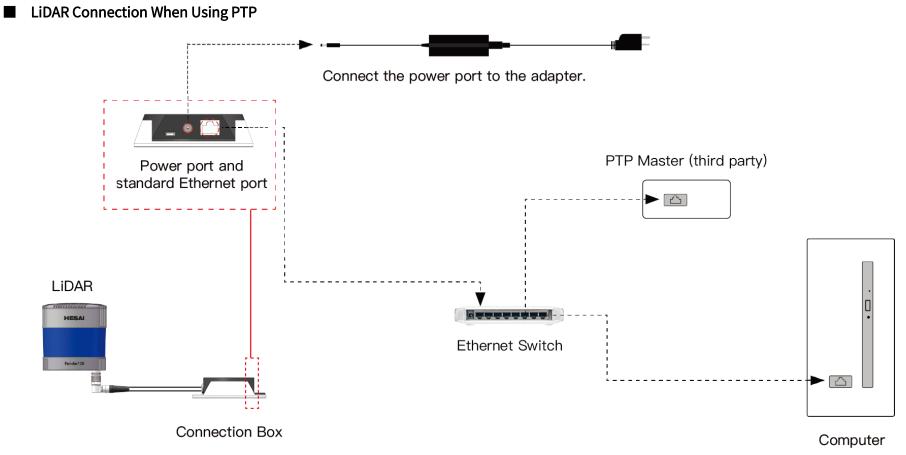


Figure III.1 Connection When Using PTP

Absolute Packing Time When Using PTP

To use PTP as the clock source, connect a third-party PTP master device to get the absolute time.

NOTE

- PTP master is a third-party device and is not included with the LiDAR.
- The LiDAR works as a PTP slave device and the PTP protocol is Plug&Play. No additional setup is required.
- When using a PTP clock source, the LiDAR does not output GPS Data Packets.

• The timestamps and Date & Time fields in Point Cloud Data Packets strictly follow the PTP master device. Certain PTP master devices may have a specified offset from the Date & Time output by the LiDAR. Please verify the configuration and calibration of your PTP master device.

• If a PTP clock source is selected but no PTP master device is available, the LiDAR will count the time from an invalid past time. If a PTP clock source is supplied and later stopped, the LiDAR will continue to count the time with an internal clock.

Appendix IV Nonlinear Reflectivity Mapping

By default, the 1-byte reflectivity data in Point Cloud Data Packets linearly represents target reflectivity from 0 to 255%.

Alternatively, users may choose the Nonlinear Mapping mode, see Section 4.2 (Web Control - Settings).

The nonlinear relationship is detailed below.

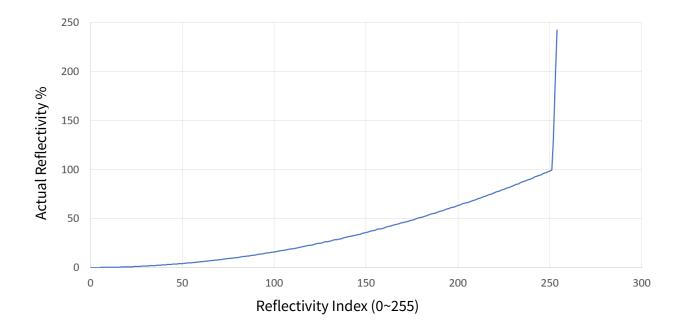


Figure IV.1 Nonlinear Reflectivity Mapping

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
0	0	20	0.67	40	2.69	60	5.9
1	0.01	21	0.75	41	2.81	61	6.1
2	0.02	22	0.81	42	2.94	62	6.3
3	0.03	23	0.87	43	3.07	63	6.5
4	0.04	24	0.95	44	3.21	64	6.7
5	0.05	25	1.05	45	3.36	65	6.9
6	0.08	26	1.15	46	3.5	66	7.1
7	0.11	27	1.25	47	3.64	67	7.3
8	0.13	28	1.35	48	3.79	68	7.5
9	0.15	29	1.45	49	3.93	69	7.7
10	0.19	30	1.55	50	4.08	70	7.9
11	0.23	31	1.65	51	4.25	71	8.12
12	0.26	32	1.75	52	4.42	72	8.37
13	0.29	33	1.85	53	4.58	73	8.62
14	0.34	34	1.95	54	4.75	74	8.87
15	0.39	35	2.06	55	4.92	75	9.1
16	0.44	36	2.19	56	5.1	76	9.3
17	0.5	37	2.31	57	5.3	77	9.5
18	0.56	38	2.44	58	5.5	78	9.7
19	0.61	39	2.56	59	5.7	79	9.9

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
80	10.17	100	15.87	120	22.83	140	31.17
81	10.5	101	16.17	121	23.25	141	31.5
82	10.83	102	16.5	122	23.75	142	31.83
83	11.12	103	16.83	123	24.17	143	32.25
84	11.37	104	17.17	124	24.5	144	32.75
85	11.62	105	17.5	125	24.83	145	33.25
86	11.87	106	17.83	126	25.25	146	33.75
87	12.12	107	18.17	127	25.75	147	34.25
88	12.37	108	18.5	128	26.17	148	34.75
89	12.62	109	18.83	129	26.5	149	35.25
90	12.87	110	19.17	130	26.83	150	35.75
91	13.17	111	19.5	131	27.25	151	36.25
92	13.5	112	19.83	132	27.75	152	36.75
93	13.83	113	20.25	133	28.17	153	37.25
94	14.17	114	20.75	134	28.5	154	37.75
95	14.5	115	21.17	135	28.83	155	38.25
96	14.83	116	21.5	136	29.25	156	38.75
97	15.12	117	21.83	137	29.75	157	39.17
98	15.37	118	22.17	138	30.25	158	39.5
99	15.62	119	22.5	139	30.75	159	39.83

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Reflectivity Index	Reflectivity						
(0~255)	(%)	(0~255)	(%)	(0~255)	(%)	(0~255)	(%)
160	40.5	180	51.25	200	63.25	220	76.5
161	41.25	181	51.75	201	63.75	221	77.25
162	41.75	182	52.25	202	64.5	222	77.75
163	42.25	183	52.75	203	65.25	223	78.5
164	42.75	184	53.5	204	65.75	224	79.25
165	43.25	185	54.25	205	66.25	225	79.75
166	43.75	186	54.75	206	66.75	226	80.5
167	44.25	187	55.25	207	67.5	227	81.25
168	44.75	188	55.75	208	68.25	228	81.75
169	45.25	189	56.5	209	68.75	229	82.5
170	45.75	190	57.25	210	69.5	230	83.5
171	46.25	191	57.75	211	70.25	231	84.25
172	46.75	192	58.25	212	70.75	232	84.75
173	47.25	193	58.75	213	71.5	233	85.5
174	47.75	194	59.5	214	72.25	234	86.5
175	48.25	195	60.25	215	72.75	235	87.25
176	48.75	196	60.75	216	73.5	236	87.75
177	49.5	197	61.25	217	74.25	237	88.5
178	50.25	198	61.75	218	74.75	238	89.25
179	50.75	199	62.5	219	75.5	239	89.75

Nonlinear Reflectivity Mapping (Continued on the Next Page)

Nonlinear Reflectivity Mapping (Continued)

Reflectivity Index	Reflectivity		
(0~255)	(%)		
240	90.5		
241	91.5		
242	92.5		
243	93.25		
244	93.75		
245	94.5		
246	95.5		
247	96.25		
248	96.75		
249	97.5		
250	98.5		
251	99.5		
252	132		
253	196		
254	242		

Appendix V Support and Contact

Technical Support

If your question is not addressed in this manual, please contact us at:

service@hesaitech.com www.hesaitech.com https://github.com/HesaiTechnology

NOTE Please leave your questions under the corresponding GitHub projects.

Legal Notice

Copyright 2020 by Hesai Technology. All rights reserved. Use or reproduction of this manual in parts or its entirety without the authorization of Hesai is prohibited.

Hesai Technology makes no representations or warranties, either expressed or implied, with respect to the contents hereof and specifically disclaims any warranties, merchantability, or fitness for any particular purpose. Further, Hesai Technology reserves the right to revise this publication and to make changes from time to time in the contents hereof without obligation to notify any person of such revision or changes.

HESAI and HESAI logo are registered trademarks of Hesai Technology. All other trademarks, service marks, and company names in this manual or on Hesai's official website are properties of their respective owners.

The software included in this product contains copyright that is registered under Hesai Technology. Any third party is not permitted, except as expressly permitted by licensor or expressly required by applicable law, to decompile, reverse engineer, disassemble, modify, rent, lease, loan, distribute, sublicense, create derivative works based on the whole or any part of the software.

MAP IV, Inc.

sales: contact@map4.jp Website: https://www.map4.jp Address: #2702 JR Gate Tower, 1-1-3 Meieki, Nakamura-ku, Nagoya

Website